CLASSROOM NOTE

A single axiom for equivalence relations

por José Morgado

Instituto de Matemática, Universidade Federal de Pernambuco, Brasil

1. In [1], p. 21, B. H. Neumann formulated the following problem: eIs there a single identity involving a binary relation ρ on S to S and $=, \circ, \cup, \cap,^{-1}, \imath, \varepsilon, \omega$, such that ρ is an equivalence if and only if it satisfies the identity? s .

The purpose of this note is to solve this problem.
2. Let us recall that a binary relation α on S to S is a subset of the cartesian product $S \times S$. Instead of $(x, y) \in \alpha$, we shall write $x \alpha y$ (read: $<x$ stands in the relation α to y).

The empty relation is denoted by ε, i. e., one has $x \varepsilon y$ for no element $(x, y) \in S \times S$. The universal relation is denoted by ω, i. e., one has $x \omega y$ for every element $(x, y) \in S \times S$. The identity relation is denoted by ι, i. e., one has $x \iota y$ if and only if $x=y$.

The converse α^{-1} of the binary relation α is the binary relation defined by

$$
x \alpha^{-1} y \text { if and only if } y \alpha x
$$

It is immediate that

$$
\begin{equation*}
\left(\alpha^{-1}\right)^{-1}=\alpha \tag{1}
\end{equation*}
$$

Let α and β be binary relations on S to S. Since α and β are subsets of $S \times S$, on has
$\alpha=\beta$, if and only if $x \alpha y$ is equivalent to $x \beta y$;
$\alpha \subseteq \beta$ if and only if $x \alpha y$ implies $x \beta y$; $x \alpha \cup \beta y$, if and only if $x \alpha y$ or $x \beta y$;
$x \alpha \cap \beta y$, if and only if $x \alpha y$ and $x \beta y$.
It is easy to see that

$$
\begin{equation*}
\alpha \subseteq \beta \text { implies } \alpha^{-1} \subseteq \beta^{-1} \tag{2}
\end{equation*}
$$

The product $\alpha \circ \beta$ of α by β is defined by the condition $x \alpha \circ \beta y$, if and only if there is some element z in S such that $x \alpha z$ and $z \beta y$.

This product is associative. Instead of $\alpha \circ \alpha$, we shall write α^{2}.

One sees easily that
(4) $\alpha \subseteq \beta$ implies $\alpha \circ \gamma \subseteq \circ \beta \circ \gamma$ and $\gamma \circ \alpha \subseteq \gamma \circ \beta$,
(6) $\quad(\alpha \cup \beta) \circ \gamma=(\alpha \circ \gamma) \cup(\beta \circ \gamma)$,
for all binary relations α, β, γ on S to S (see, for instance, [2], pp. 9-11).
3. As it is well known, the binary relation ρ is said to be
(i) reflexive, if $t \subseteq p$,
(ii) symmetric, if $\rho^{-1} \subseteq p$,
(iii) transitive, if $\rho^{2} \subseteq \rho$.

From (1) and (2) it follows that, if p is symmetric, then one has $\rho=\rho^{-1}$. If ρ is reflexive, then from $t \subseteq p$ and $t \circ \rho=p$, it follows $\rho \subseteq \rho^{2}$ by (4) and, consequently, if ρ is reflexive and transitive, then one has $p=p^{2}$.

Now, we are going to state the following
Theorem 1: Let p be a binary relation on S to S . Then p is an equivalence relation, if and only if one has

$$
\begin{equation*}
\rho=\left(t \cup P^{-1}\right)^{2} \tag{7}
\end{equation*}
$$

Proof: Indeed, let us suppose that condition (7) holds. Then, since $t \subseteq t \cup p^{-1}$, one has by (4)

$$
\begin{gathered}
t \cup p^{-1}=t \circ\left(t \cup p^{-1}\right) \subseteq\left(t \cup p^{-1}\right) \circ\left(t \cup p^{-1}\right)= \\
=\left(t \cup p^{-1}\right)^{2}=p
\end{gathered}
$$

and hence

$$
t \subseteq p \text { and } p^{-1} \subseteq p,
$$

that is to say, ρ is reflexive and symmetric.

Since $\rho^{-1}=\rho$, one has by (7)

$$
\begin{equation*}
(\imath \cup p)^{2}=\rho \tag{8}
\end{equation*}
$$

From $\rho \subseteq \iota \cup \rho$, it follows by (4) and (8) $\rho^{2} \subseteq(t \cup \rho) \circ \rho \subseteq(t \cup \rho) \circ(\iota \cup \rho)=(t \cup \rho)^{2}=\rho$, proving that ρ is also transitive and, consequently, p is an equivalence relation.

Conversely, let us suppose that ρ is an equivalence relation.

By (5) and (6), one has

$$
\begin{aligned}
\left(t \cup \rho^{-1}\right)^{2} & =\left(\imath \cup \rho^{-1}\right) \circ\left(\imath \cup p^{-1}\right)= \\
& =\imath \cup \rho^{-1} \cup \rho^{-1} \cup\left(p^{-1}\right)^{2} .
\end{aligned}
$$

Since $\rho^{-1}=\rho$, it results

$$
\left(t \cup \rho^{-1}\right)^{2}=t \cup \rho \cup \rho^{2}
$$

and since $t \subseteq p$ and $p^{2} \subseteq p$, it follows

$$
\left(\imath \cup \rho^{-1}\right)^{2}=\rho,
$$

as wanted.
Another characterization of the equivalence relations by a single identity is given by the following

Theorem 2: Let ρ be a binary relation on S to S . Then p is an equivalence relation, if and only if

$$
\begin{equation*}
\rho=t \cup \rho^{-1} \cup \rho^{2} . \tag{9}
\end{equation*}
$$

Proof: In fact, let p be an equivalence relation. Then, from (i), (ii) and (iii), one concludes that

$$
\because \cup \rho^{-1} \cup p^{2} \subseteq \rho .
$$

On the other hand, since ρ is reflexive and transitive, one has $\rho^{2}=\rho$ and hence

$$
p \subseteq \iota \cup p^{-1} \cup p^{2}
$$

and consequently (9) holds.
Conversely, if (9) holds, then one has

$$
t \subseteq p, p^{-1} \subseteq p \text { and } p^{2} \subseteq p
$$

proving that ρ is an equivalence relation.
By a similar way, one states that ρ is an equivalence relation, if and only if one of the following conditions holds :

$$
\begin{gather*}
\rho^{-1}=(t \cup \rho)^{2} \tag{10}\\
\rho^{-1}=t \cup \rho \cup p^{2}
\end{gather*}
$$

REFERENCES

[1] B. H. Neumann, Special Topics in Algebra: Universal Algebra, Courant Institut of Mathematical Sciences, New York, 1962.
[2] José Morgado, Introdução à Teoria dos Reticulados, Textos de Matemática, Recife, 1962.

