ano xxix - n.oo 109-112 GAZETA DE MATEMÁTICA JANEIRO/DEZ. - 1968

somor: Gazeta de Matemática, Lda.
redacrorss: J. Gaspar Teixeira, J. Morgado e J. da Silva Paulo
Composto na Tipografle Matemática, Lda. - Rue Díario de Noticias, 134-1.* - Esq. - Telef. 369449 - LISBOA

On the condition $(x y)^{2}=x^{2} y^{2}$ in nonassociative rings
 by José Morgado
 Instituto de Matematica, Universidade Federal de Peraambuco, Brasil

1. It is well known that a group G satisfying the condition

$$
\begin{equation*}
(x y)^{2}=x^{2} y^{2} \text { for all } x, y \text { in } G \tag{1}
\end{equation*}
$$

is necessarily commutative.
It is also well known that if G is a group such that
(2) $(x y)^{i}=x^{i} y^{i}$ for three consecutive integers i and for all x, y in G,
then G is necessarily commutative ([1], p. 31, exercise 4).

However, the ring-theoretic analogues of these group-theoretíc results do not hold.

Thus, McCoy ([2], p. 15, example 6 and p. 31, exercise 7) gives an example of a noncommutative ring satisfying the condition (1) and E. C. Johnsen, D. L. Outcalt and A. YAQUB [3] give an example of a noncommutative ring satisfying the condition (2).

In [3], the authors prove that if \mathbf{R} is any nonassociative (i. e., not necessarily associative) ring with identity satisfying the condition (1), then \mathbf{R} is commutative.

The purpose of this note is to generalize this result.
2. Let us recall that an element a of a multiplicative groupoid G is said to be an associative element, if one has

$$
a x \cdot y=a \cdot x y, \quad x a \cdot y=x \cdot a y
$$

and

$$
x y \cdot a=x \cdot y a
$$

for all x, y in G. The element a is said to be cancellable, if for all x, y in G each of the equations $a x=a y$ and $x a=y a$ implies $x=y$.

We are going to state the following
Theorem: Let R be any nonassociative ring satisfying the condition

$$
(x y)^{2}=x^{2} y^{2} \text { for all } x, y \text { in } R
$$

If for every $(\mathrm{x}, \mathrm{y}) \in \mathrm{R} \times \mathrm{R}$ there is in R some element \boldsymbol{e} which is associative and cancellable in the mnltiplicative subgroupoid of R generated by the set $\{\mathrm{x}, \mathrm{y}, \mathrm{e}\}$, then R is commutative.

Proof: Indeed, one has obviously

$$
\begin{gathered}
(x(y+z))^{2}=(x y+x z)^{2}=x y \cdot x y+ \\
\quad+x y \cdot x z+x z \cdot x y+x z \cdot x z
\end{gathered}
$$

for all x, y, z in R. SOCIEDADE POnT••••-a

On the other hand, by taking into account the hypothesis of the theorem, one sees that

$$
\begin{gathered}
(x(y+z))^{2}=x^{2}(y+z)^{2}= \\
=x^{2}\left(y^{2}+y z+z y+z^{2}\right)= \\
=x^{2} y^{2}+x^{2} \cdot y z+x^{2} \cdot z y+x^{2} z^{2} .
\end{gathered}
$$

Consequently, one has

$$
\text { (3) } x^{2} \cdot y z+x^{2} \cdot z y=x y \cdot x z+x z \cdot x y
$$

for all x, y, z in R.
If one starts with $((x+z) y)^{2}$, one obtains, by a similar way,

$$
\begin{equation*}
x y \cdot z y+z y \cdot x y=x z \cdot y^{2}+z x \cdot y^{2} \tag{4}
\end{equation*}
$$

for all x, y, z in R.
By changing x to $x+z$ in (3), one gets

$$
\begin{aligned}
& \quad x^{2} \cdot y z+x z \cdot y z+z x \cdot y z+z^{2} \cdot y z+ \\
& + \\
& x^{2} \cdot z y+z x \cdot z y=x y \cdot x z+x y \cdot z^{2}+ \\
& +z y \cdot x z+z y \cdot z^{2}+x z \cdot x y+z^{2} \cdot x y
\end{aligned}
$$

and, hence, it results by (3),

$$
\begin{align*}
& x z \cdot y z+z x \cdot y z+z^{2} \cdot y z+z x \cdot z y= \tag{b}\\
= & x y \cdot z^{2}+z y \cdot x z+z y \cdot z^{2}+z^{2} \cdot x y
\end{align*}
$$

for all x, y, z in R.
Now, we are going to show that the element e satisfying the conditions required in the theorem, commutes with x and y.

In fact, by putting $x=z=e$ in (3), it results

$$
e^{2} \cdot y e+e^{2} \cdot e y=e y \cdot e^{2}+e^{2} \cdot e y
$$

and so

$$
\begin{equation*}
e^{2} \cdot y e=e y \cdot e^{2} \tag{6}
\end{equation*}
$$

Since e is associative in the multiplicative subgroupoid generated by $\{x, y, e\}$, the equality (6) implies

$$
e^{2} y \cdot e=(e y \cdot e) e
$$

and, since e is cancellable in that groupoid, it follows

$$
e^{2} y=e y \cdot e
$$

By repeating the argument, one obtains

$$
e y=y e,
$$

as wanted.
Analogously, by putting $y=z=e$ in (4), one gets $e x=x e$.

If in (5) one puts $z=e$, it results by (6),

$$
\begin{align*}
& x e \cdot y e+e x \cdot y e+e x \cdot e y= \tag{7}\\
& =x y \cdot e^{2}+e y \cdot x e+\theta^{2} \cdot x y
\end{align*}
$$

Or, one has
$\begin{aligned} x e \cdot y e & =(x e \cdot y) e=(x \cdot e y) e=(x \cdot y e) e= \\ & =(x y \cdot e) e=x y \cdot e^{2},\end{aligned}$
by the associativity of e and commutativity of e with y.

Similarly, one sees that

$$
e x \cdot e y=e^{2} \cdot x y
$$

and, consequently, from (i) it follows

$$
e x \cdot y e=e y \cdot x e
$$

and, hence,

$$
(e x \cdot y) e=(e y \cdot x) e
$$

Since e is cancellable, one concludes

$$
e x \cdot y=e y \cdot x
$$

hence,

$$
e \cdot x y=e \cdot y x
$$

that is to say,

$$
x y=y x
$$

as it was to be proved.

BIBLIOGRAPHY

[1] I. N. Hersteix, Topics in Algebra, Blaisdell, New York, 1964.
[2] Neal H. McCox, Introduction to Modern Algebra, Allyn and Bacon, Boston, 1960.
[3] E. C. Jounsen, D. L. Outcalt and Adil Yaqub, An elementary commutativity theorem for rings, Amer. Math. Monthly, 75 (1968), pp. 288-289.

