Algoritmo Modificado

Prova da identificação dos algoritmos
Da exposição resulta que para a extração da raiz quadrada de um número N, sub-trae-se de N o quadrado de Z, procura-se um número q tal que seja o quociente de N
pelo dobro de Z, e ainda faz-se o teste da nova sucessão de impares, cuja somáá q^{2}, isto $́, q$ é tal que $2 Z \cdot q+q^{2}$ é o maior número inferior ao resto $N-Z^{2}$, que é justamente o que se faz no algoritmo tradicional: $(2 Z+q) q$.

O que se fêz foi simplesmente separar o cálculo q^{2} do teste para uma melhor aprendizagem.

Exemplo:

$\begin{array}{r} \sqrt{3331} \\ 2500 \end{array}$	$\begin{array}{r} 50 \\ \times \quad 2 \end{array}$		
851	100	100	Raiz $=50+7=57$
749	$8+$	7+	
102	108	107	
	$\begin{array}{r} \\ \times 8 \\ \hline\end{array}$	$\times 7$	
	$\overline{864}$	749	

Ordered semigroups which contain zeroid elements

by C. W. Leininger

In [1] Clifford and Miller show that if a semigroup S has a zeroid element, then then its kernel is the subgroup K of zeroids of S. Furthermore K determines a partition G of S in a certain way. The purpose of this paper is to consider such a semigroup under the suppositions that K is a nondegenerate subset of S and there is a comparable pair of elements of S not both in the same set of G. We find that K inclndes a subchain Q of S which is o-isomorphic to the additive group of integers. Some aspects of the structure of ordered semigroups with zeroids elements are then investigated.

1. Introduction.

If z denotes the identity element of K, then the subsemigroug J such that

$$
J=\{x: x \in S, x z=z x=z\}
$$

is called the core of S and the set $J \cup K$ is called the frame of S. For convenience we summarize from [1, p. 121] the following properties pertaining to the gross structure of S :

P1. If $J(u)=\{x: x \in S, u \in K, x z=$ $=z x=u\}$, then the collection of the sets $J(u)$ is the partition G (note $J(z)=J$).

P2. If $a \in J(u)$ and $b \in J(v)$, then $a b \in J(u v)$.

P3. If $a \in J(u)$ and $v \in K$, then $a v=$ $u v$ and $v a=v u$.

If S is ordered, it is apparent that it also possesses the following properties:

P4. If $a \in J(u), \quad b \in J(v)$ and $u<v$, then $b \not \approx a$.

P5. If $a \in J(u), \quad b \in J(v), \quad u \neq v$ and $a<b$, then $u<v$.

P6. If a and b are in $J(u)$ and $a<$ $c<b$, then $c \in J(u)$.
2. Semigroups with the comparability condition.

It is readily established that no finite semigroup with zeroid elements has this property.

Theorem 1. Suppose \mathbf{S} is an ordered semigroup containing zeroids \mathbf{u} and \mathbf{v}, and there is a pair a, b of elements of S such that a is in $\mathrm{J}(\mathrm{u}), \mathrm{b}$ is in $\mathrm{J}(\mathrm{v})$ and $\mathrm{a}<\mathrm{b}$. Then there is an infinite, cyclic and totally ordered subgroup Q of the kernel K of S and a subsemigroup T of S such that Q is the kernel of T .

Proof. As the conditions of P5 are met, we have $u<v$. Since $u^{-1} \neq v^{-1}, z=u u^{-1}<$ $v u^{-1}$. Let q denote $v u^{-1}$. Then $z<q$ implies $q<q^{2}$ since q is not idempotent. It follows that for each positive integer $n, q^{n} \in K$ and $q^{n}<q^{n+1}$, and since $q^{-1}<z$, it also follows that $q^{-n} \in K$ and $q^{-(n+1)}<q^{-n}$. If Q denotes the chain generated by q and
$T=\{x: x \in J(v), v \in Q\}$, then by [1, pp. 121--123], T is a semigroup with Q its kernel.

An example of a totally ordered semigroug which is not a group is given by $(S,+,<)$, where $S=I \cup x, I$ is the additive group of integers with the natural ordering, $x+x=$ $x, x+n=n+x=n$ for each integer n, and $0<x<1$.

3. Structure theorems.

It follows from P3 that the frame of S is a subsemigroups of S. Hence if S satisfies the conditions of Theorem 1 and J is a subchain of S, it follows from $\mathbf{P} 6$ that $J \cup Q$ is also a suchain of S. It is known [1, p. 120, Theorem 3] that the mapping $a \rightarrow z a(z a), a \in S$, is a homomorphism μ of S onto K. We apply the latter concept to an ordered semigroup.

Theorem 2. If S is an ordered semigroup containing zeroid elements, and if its kernel K is a subchain Q of S which is generated by the zeroid q, then μ is the only o-homomorphism of S onto K .

Proof. Denote by λ an o-homomorphism of S onto K. Since $\lambda(z)=z$, if $u \in Q$ and $a \in J(u)$, then $\lambda(u)=\lambda(z a)=z \lambda(a)=\lambda(a)$. Furthermore, since Q is o-isomorphic to the additive group I of integers and the identity mapping is the only o-automorphism of I, it follows that $\lambda(a)=z a$.

We note that in the above example S is not Archimedean and contains no anomalous pair as defined by [2, p. 162].

Theorem 3. Suppose S is a totally ordered Archimedean semigroup containing zeroid elements. Then (i) $\mathrm{J}(\mathrm{z})=\mathrm{z}$ and (ii) if $\mathrm{S} \neq \mathrm{K}$, then S contains an anamalous pair.

Proof. (i) If $x \in J(x), x \neq z$, then by P2, $x^{n} \in J\left(z^{n}\right)=J(z), n=1,2,3 \cdots$. According to P6 and Theorem 1 no interval of $J(z)$ contains the generator q of the subgroup Q of K. But there is an interval of $J(z)$ which contains z and x^{n}. Hence $x^{n}<q$.
(ii) Since $J(z)=z, \mathrm{P} 4$ implies that a, b is an anomalous pair if there is a u in K such that $a \in J(u)$ and $b \in J(u)$.

It may be observed that if $K=Q$, as in the example, then Theorem $3(i)$ takes the following stronger form.

Theorem 4. Suppose S is a totally ordered semigroup containing zeroid elements and the kernel K of S is cyclic. Then S is Archimedean if and only if $\mathrm{J}(\mathrm{z})=\mathrm{z}$.

Proof. If S is Archimedean, then $J(z)=z$ according to Theorem 3. Suppose $J(2)=z$. It follows from Theorem 1 that K is an infinite subchain of S. Hence if $u \in K, u>z$ and m is a positive integer, there is a positive integer n such that $u^{n}>u^{m}$. Since if $a \in J(u)$, then $a^{n} \in J\left(u^{n}\right)$, it follows from $\mathbf{P} 4$ that $a^{n}>u^{m}$. If $u<z$, it can be shown similarly that $a^{-n}<u^{-m}$.

REFERENCES

[1] A. H. Clifford and D. D. Miller, Semigroups having zeroid elements, Amer. J. Math. 70 (1948), pp. 117-125.
[2] L. Fuons, Partially ordered algebraic systems, Addison-Wesley, Reading, Mass., U. S. A., 1963.

Matrices whose sum is the identity malrix

 by G. N. de OliveiraCoimbra

1. Let $A_{i}(i=1, \cdots, m)$ be $n \times n$ complex matrices and let n_{i} denote the rank of A_{i}. In [1], p. 68 the following problem is posed:

If the matrices $A_{i}(i=1, \cdots, m)$ are symmetric and $\sum_{i=1}^{m} A_{i}=E(\dot{E}$ denotes the $n \times n$ identity matrix), show that the following statements are equivalent :
a) $A_{i}^{2}=A_{i}$
$(i=1, \cdots, m)$
b) $\sum_{i=1}^{m} n_{i}=n$
c) $\quad A_{i} A_{j}=0 \quad(i, j=1, \cdots, m ; i \neq j)$.

In [3] it is asked whether it is possible to drop the condition that the matrices $A_{i}(i=1, \ldots, m)$ should be symmetric. In the present note we answer this question in the affirmative. So we no longer assume that the matrices $A_{i}(i=1, \ldots, m)$ are symmetric.

We prove first that a) implies b).
If A_{i} is idempotent there exists a nonsingular matrix T_{i} such that (see [2], Vol. I, p. 226)

$$
\begin{equation*}
A_{i}=T_{i} \operatorname{diag}(\overbrace{1, \cdots, 1}^{n_{i}}, \overbrace{0, \cdots, 0}^{n-n_{i}}) T_{i}^{-1} \tag{1}
\end{equation*}
$$

This can be proved very easily if we note that A_{i} is idempotent if and only if each diagonal block in its Jordan normal form

