Algoritmo Modificado

	V3351	50		
	2500	$\times 2$		
	851	100×8=	800	100×7=700
	800	Teste: 82	=64	Teste: $7^2 = 49$
	51	(não serv	е)	Raiz = 50 + 7 = 57
	100+			
	151			
	49-	1.		
R	= 102			

pelo dôbro de Z, e ainda faz-se o teste da nova sucessão de impares, cuja soma é q^2 , isto é, q é tal que $2Z \cdot q + q^2$ é o maior número inferior ao resto $N-Z^2$, que é justamente o que se faz no algoritmo tradicional: (2Z + q)q.

O que se fêz foi simplesmente separar o cálculo q^2 do teste para uma melhor aprendizagem.

EXEMPLO:

3331	50		
2500	$\times 2$		
851	100	100	Raiz = 50 + 7 = 57
749	8+	7+	
102	108	107	
1. 19	$\times 8$	$\times 7$	
	864	749	

Prova da identificação dos algoritmos

Da exposição resulta que para a extração da raiz quadrada de um número N, subtrae-se de N o quadrado de Z, procura-se um número q tal que seja o quociente de N

Ordered semigroups which contain zeroid elements

by C. W. Leininger

In [1] CLIFFORD and MILLER show that if a semigroup S has a zeroid element, then then its kernel is the subgroup K of zeroids of S. Furthermore K determines a partition G of S in a certain way. The purpose of this paper is to consider such a semigroup under the suppositions that K is a nondegenerate subset of S and there is a comparable pair of elements of S not both in the same set of G. We find that K includes a subchain Q of S which is o-isomorphic to the additive group of integers. Some aspects of the structure of ordered semigroups with zeroids elements are then investigated.

1. Introduction.

If z denotes the identity element of K, then the subsemigroug J such that

$$J = \{x : x \in S, xz = zx = z\}$$

is called the core of S and the set $J \cup K$ is called the frame of S. For convenience we summarize from [1, p. 121] the following properties pertaining to the gross structure of S: P1. If $J(u) = |x: x \in S, u \in K, xz = zx = u|$, then the collection of the sets J(u) is the partition G (note J(z) = J).

P2. If $a \in J(u)$ and $b \in J(v)$, then $a b \in J(uv)$.

P3. If $a \in J(u)$ and $v \in K$, then av = uv and va = vu.

If S is ordered, it is apparent that it also possesses the following properties :

P4. If $a \in J(u)$, $b \in J(v)$ and u < v, then $b \nleq a$.

P5. If $a \in J(u)$, $b \in J(v)$, $u \neq v$ and a < b, then u < v.

P6. If a and b are in J(u) and a < c < b, then $c \in J(u)$.

Semigroups with the comparability condition.

It is readily established that no finite semigroup with zeroid elements has this property.

THEOREM 1. Suppose S is an ordered semigroup containing zeroids u and v, and there is a pair a, b of elements of S such that a is in J(u), b is in J(v) and a < b. Then there is an infinite, cyclic and totally ordered subgroup Q of the kernel K of S and a subsemigroup T of S such that Q is the kernel of T.

PROOF. As the conditions of P5 are met, we have u < v. Since $u^{-1} \neq v^{-1}, z = u u^{-1} < v u^{-1}$. Let q denote $v u^{-1}$. Then z < qimplies $q < q^2$ since q is not idempotent. It follows that for each positive integer $n, q^n \in K$ and $q^n < q^{n+1}$, and since $q^{-1} < z$, it also follows that $q^{-n} \in K$ and $q^{-(n+1)} < q^{-n}$. If Q denotes the chain generated by q and $T = \{x : x \in J(v), v \in Q\}, \text{ then by } [1, \text{ pp. 121}]$ -123], T is a semigroup with Q its kernel.

An example of a totally ordered semigroug which is not a group is given by (S, +, <), where $S = I \cup x$, I is the additive group of integers with the natural ordering, x+x=x, x+n=n+x=n for each integer n, and 0 < x < 1.

3. Structure theorems.

It follows from P3 that the frame of S is a subsemigroups of S. Hence if S satisfies the conditions of Theorem 1 and J is a subchain of S, it follows from P6 that $J \cup Q$ is also a suchain of S. It is known [1, p. 120, Theorem 3] that the mapping $a \rightarrow z a(z a)$, $a \in S$, is a homomorphism μ of S onto K. We apply the latter concept to an ordered semigroup.

THEOREM 2. If S is an ordered semigroup containing zeroid elements, and if its kernel K is a subchain Q of S which is generated by the zeroid q, then μ is the only o-homomorphism of S onto K.

PROOF. Denote by λ an o-homomorphism of S onto K. Since $\lambda(z) = z$, if $u \in Q$ and $a \in J(u)$, then $\lambda(u) = \lambda(za) = z\lambda(a) = \lambda(a)$. Furthermore, since Q is o-isomorphic to the additive group I of integers and the identity mapping is the only o-automorphism of I, it follows that $\lambda(a) = za$.

We note that in the above example S is not Archimedean and contains no anomalous pair as defined by [2, p. 162].

THEOREM 3. Suppose S is a totally ordered Archimedean semigroup containing zeroid elements. Then (i) J(z) = z and (ii) if $S \neq K$, then S contains an anamalous pair.

PROOF. (i) If $x \in J(x), x \neq z$, then by P2, $x^n \in J(z^n) = J(z), n = 1, 2, 3 \cdots$. According to P6 and Theorem 1 no interval of J(z) contains the generator q of the subgroup Q of K. But there is an interval of J(z) which contains z and x^n . Hence $x^n < q$.

(*ii*) Since J(z) = z, P4 implies that a, b is an anomalous pair if there is a u in K such that $a \in J(u)$ and $b \in J(u)$.

It may be observed that if K = Q, as in the example, then Theorem 3 (i) takes the following stronger form.

THEOREM 4: Suppose S is a totally ordered semigroup containing zeroid elements and the kernel K of S is cyclic. Then S is Archimedean if and only if J(z) = z.

PROOF. If S is Archimedean, then J(z) = z according to Theorem 3. Suppose J(z) = z. It follows from Theorem 1 that K is an infinite subchain of S. Hence if $u \in K$, u > z and m is a positive integer, there is a positive integer n such that $u^n > u^m$. Since if $a \in J(u)$, then $a^n \in J(u^n)$, it follows from P4 that $a^n > u^m$. If u < z, it can be shown similarly that $a^{-n} < u^{-m}$.

REFERENCES

- A. H. CLIFFORD and D. D. MILLER, Semigroups having zeroid elements, Amer. J. Math. 70 (1948), pp. 117-125.
- [2] L. FUCHS, Partially ordered algebraic systems, Addison-Wesley, Reading, Mass., U. S. A., 1963.

Matrices whose sum is the identity matrix

by G. N. de Oliveira Coimbra

1. Let $A_i (i = 1, \dots, m)$ be $n \times n$ complex matrices and let n_i denote the rank of A_i . In [1], p. 68 the following problem is posed:

If the matrices $A_i (i = 1, \dots, m)$ are symmetric and $\sum_{i=1}^{m} A_i = E$ (*E* denotes the $n \times n$

identity matrix), show that the following statements are equivalent:

a)
$$A_i^2 = A_i$$
 $(i = 1, ..., m)$

- b) $\sum_{i=1}^{m} n_i = n$
- c) $A_i A_j = 0$ $(i, j = 1, ..., m; i \neq j).$

In [3] it is asked whether it is possible to drop the condition that the matrices $A_i(i=1, \dots, m)$ should be symmetric. In the present note we answer this question in the affirmative. So we no longer assume that the matrices $A_i(i=1,\dots,m)$ are symmetric. We prove first that a) implies b).

If A_i is idempotent there exists a nonsingular matrix T_i such that (see [2], Vol. I, p. 226)

(1)
$$A_i = T_i \operatorname{diag}(\overline{1, \dots, 1}, \overline{0, \dots, 0}) T_i^{-1}.$$

This can be proved very easily if we note that A_i is idempotent if and only if each diagonal block in its JORDAN normal form