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os valores 

A f f i ) — ^ - . f u C D — — 

Q — f â * c o m 2 P 5 ( v ) = l . 

Como tinhamos afirmado do início, os valores 
de pn (K) tendem alternadamente para o li-
mite 1/4, independente de v. Isso é agora 
evidente a partir de (10), pois que por 
(— /2/6)" -+ 0 , ao passarmos ao limite, a 
segnnda parcela do lado direito de (10) tende 
para o vector zero. Este resultado é, aliás, 
susceptível de ama justificação heurística, 
pois, sendo o dado ideal (como considerámos 
na formulação do problema), no limite para 
nm número infinito de lançamentos obtém-se 
uma simetria para as 4 diferentes con-
gruências possíveis, pelo que se deverá ter 
p„ (y) I/4, para qualquer v (este racio-
cínio é, porém, falso no caso de o dado ser 
viciado, o. g. se só forem positivas as proba-
bilidades de obtenção de faces com um nú-
mero par de pontos). Teríamos chegado ainda 
ao mesmo resultado, observando que a matriz 
A define uma aplicação de contracção no 

sub-espaço do vulgar espaço métrico eucli-
deano a 4 dimensOes formado pelos possíveis 
vectores pn (de coordenadas 
com 2 I>N( Y ) = L ) . Felo teorema de BANACII 

relativo aos pontos fixos, deverá haver um e 
um só ponto fixo, que logo se vê ser o vector 
cujas 4 coordenadas são todas iguais a 1/4. 

NOTA. A sucessão | p„; n = 0 , 1 , 2 , j 
dos vectores pn constitui um dos exemplos 
mais simples de uma sucessão de distribniçóes 
de probabilidade em que cada uma delas de-
pende apenas da precedente p n - t , tal como 
num processo iterativo simples J PA\N = 
=>0,1 , - - - j é portanto um exemplo, extre-
mamente simples, de uma cadeia de MÀKKOV. 

BIBLIOGRAFIA 

[1] MARKOV, A. A . (1912). WahrschtinlichkeiUrechnUnrj, 
Teubner Verlag, Leipzig. 

[2] R I C H T E R , H. (1956). Wahrscheinlichkeitstheorie. 
Springer-Verlag. Berlin-Göttingen-Heidelberg. 

[3J VruiNTE GOHIJALVES, J. (1950). Curso de Algebra 
Superior 2. Lisboa. 

[4] ZURMÖHL, R. (1963). Matrizen (3. Auflage). 
Springer-Verlag. Berlin - Güttingen - Heidelberg-

Pari-mutuel betting 
by John J. Wiorkowski 

Chicago 

Pari-mutuel betting is a form of betting on 
horses in which those who bet on the win-
ning horse share the total amount bet on all 
horses less a small per cent which is paid 
to the management. Considering that statis-
ticians and mathematicians have always been 
particularly interested in gambling systems, 
it is surprising that pari-mutuel betting has 

received such sparse attention. This lack of 
attention is perhaps attributable to the inhe-
rent difficulty of determining the actual pro-
bability that a horse will win a race, since 
this probability depends on the other horses 
in the race, the conditions of the track, and 
a plethora of other factors. To circumvent 
this difficulty, let us suppose that the better 
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has a scheme for as signing probabilities of 
winning to the various horses. Actually, this 
is not an unreasonable assumption. The va-
rious race tracks publish what is called the 
«Morning Line», which lists the track lian-
dicapper's estimates of the odds on all horses. 
Thus, if the track percentage, r , is ignored, 
the usual odds-probability relationship holds: 

Odds * — ? or p = . 
p Odds + 1 

Other natural choices of probability distri-
bution might be based on the proportion of 
the total pool bet on each horse, or schemes 
weighting the «picks» of various handicappers. 

Suppose we have a race of n horses. Let 
hi designate the event that the ith horse wins 
the race, and let P = (pi,---,/>,) denote a 
probability distribution over the events 
A,, • • •, A„ where p, X 0 for i = 1 , - • •, n 
and 2 ^ * = 1 • Let us assume that the better 

4 

is the last person to bet and can bet an 
amount a . (We will later assume that « = 1.) 
Further, let us designate by Ai the total 
amount already bet on the event hi, and let 

n 
A = 2 Ai. Finally, let r designate the 

proportion of the total amount bet kept by 
the track. Let us first treat the problem 
classically and see why this approach is not 
fruitful. { I will follow the analysis made by 
BOKEL [1].) Suppose the better ha* placed an 
amount a. on the event hi. Assuming that 
r = 0 , we see that if Ai occurs he receives 
a 2 -Aj/(Ai + a), and if hi does not occur 

he loses a . His expected gain is then 

Ai + a. 

This function vanishes at a = 0 (i. e., no 
bet, no gain) and also at a0 *=» (p, A — Ai)j 
/(I — pi), and is positive on (0,a„) as long 
as ao>0 (which is equivalent to pt A — 
or A i j p i < _ A ) , T o maximize set 
dx(af ^ Q 0 j j t a ; Q 

d a, 

(Ai + * ) = A ( l + ^/Atj*. 

If a0/Ai is small, then (1 + «„/^i)2" = 

= l + a 0 { 2 A l so that <7=^2 = (p iA—Ai ) 
2 (1 - P i ) 

Thus, if we can determine a probability 
distribution P on hi} ,hn, and know 
A i , • * •, we know how much to bet. The 
condition that there exist an ht such that 
Aifpi ^ always holds unless Ai pj = Ajp,-
for all i,j, since, if not, then Ai/pi^A 
for all i • Suppose that strict inequality held 
for one of the Ai's, then 

* n 

2 ^ > 2 PiA = A and then A > A , 
< - 1 

which is a contradiction. The entire dis-
cussion so far hinges on the choice of the 
subjective probability distribution P, and 
therein lies the weakness of the analysis. 
Actually, this subjectivity is the motivating 
factor for betting, since each better can 
choose his own P and under it bet so as to 
have a positive expectation. But this sub-
jectivity raises a serious difficulty. Each 
better can view himself as the last better and 
bet according to his P and his assessment 
of what the final Ai's will be. But his bet 
affects the Ai's, thus we must answer the 
question of whether there exist final Ai's 
and individual bets which are compatible 
with both the various betters' strategies and 
the pari-mutuel system. 

This question is discussed in a paper by 
EDMUND E I SEN BERG and DAVID GALE [ 2 J. 
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Suppose we have m individual betters , 
Ga, ... ,G„, and n events ht , . . . , h„ . 
Let P = « subjective probability » matrix 
whose i, jth element is pij, the subjective 
probability that better (?, assigns to the 
event hj. Suppose that G; has a fixed 
budget i f f , and assume that he bets bij on 
hj according to the following strategy: He 
will bet his Bi according to some partition 
Ĉ i] t , ... , bia) on those events hj whose 
pij j Kj is maximizd, where ^ Aj / A in 
our old notation (i. e., he bets on those 
horses where his opinion diverges most dras-
tically from the consensus). 

tH 
Choose a unit of money so that 2 -#£=1 • 

( =1 
Further assume each column of P contains 
at least one positive element (otherwise no 
one would bet on the horse corresponding 
to the column of zeros). 

The pari-mutuol system requires that: 

(a) 2 b t j - 3 i t 

if—I 
m m 

(b) 2 b<J = (since 2 

(c) if p. *= max pit/"r.s , and bij > 0 , 
a 

then pi—pis }^, where «=> ! , • • • , « ; 

(c) simply states that each gambler is betting 
on those horses for which his expectation is 
a maximum. (This is easily seen since the 
return — neglecting track percentage — is 
I 

•• •---, for each unit bet; so that a%(l) = 

= 2 PU h> I = 2 P< >B'J • 

j J J 

Thus, for example, expectation is positive if 
Gi bets on those horses where pij/^j > 1, 
or just on the horse with the maximum ratio.) 
Any set of Tfj's and 6,-j's satisfying (a), 
(ft), and (c) are called equilibrium probabi-

lities and bets. Before stating the basic 
theorem, let us define a function <? with mn 
arguments Xij as : 

m n 

¥(£11» " » u o ^ 2 B * l n ( 2 p a i n ) 

tM 
where for all i,j and 2 = * * 

••I 
Note that a is continuous on its domain 

of definition and the domain is compact. Thus 
there exists a max value of o at some point, 
s a y >•*• >£»»)> 

THEOREM. A set of equilibrium probabi-
lities 7Vj and bets b,, are given by 

d f Bj pi j =• max —— «j = max - -=— by — hj icj. 
1 ! 2 P I A . 

PROOE. These must satisfy (« ) , (ft) and (c). 
I* T/L 

( b ) 2 b'J 2 •= % by the res-
i— I f=l 

triction on the domain of definition. 
Before we prove (a) and (c), not© that if 

then i c y = — s i n c e if this were 
din 

not the case, then there exists a k such that 

•Kj — > . We can now perturb ip 
<) U j t) iij 

by a small decrease 3 in t i j and a o in-
crease in tkj , to obtain a greater value. But 
since we are already at a maximum, we have 
arrived at a contradiction. 

Accordingly, we now know that ft,-_, = 
_ _ Bipij 

= \ij-Kj = l i j ^ r — > which implies that 
/• Pit Kit 

2 W o 

2 2 p>> 
Bi, verifying (a). 
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Finally, to show (c), note that since none 
of the columns of the matrix P are identi-
cally zero, eaeh izj is greater than zero. Thus 

2 ? " £<« 

JOjj/ffi ^ — 
Bt 

for all I , with equality 

at I —J (from the definition of ir, in the 
Theorem). Since b t j > 0 just when £ i j > - 0 , 

i?- 37 
then = J— and thus f^ ma~s.pi,/ 

2 i P t t l t . 

/x, — f i j /^ j , so (c) is satisfied. Q. E. D. 
Accordingly, we have shown that there 

exist final track probabilities (the itj'é) and 
individual bets (the bij 's) compatible with 
both the pari-mutuel system and individual 
betting strategies. 

Let us now attempt to rid ourselves com-
pletely of the problem of estimating P by 
viewing the pari-mutuel system as a two-
person game (the better vs. nature) and 
attempt to find a minimax solution. Suppose 
we denote by « ( « j , . . . , « „ ) the betting 
strategy which bets the amount a ; on the 

event hi where «i ^ 0 and 2 a, = 1 (in 
£ 

terms of some unit). I f ht occurs, then the 
pay off to the better is : 

0t; ^ 
(1 r ) ( j l + 1) —(j^i + g.) 

Ai+at 

, ( l ~ r ) { A + l ) 1 < 
Ai + a i 

(Note that we are now designating a win 
by the better as negative quantity.) 

Suppose that the probability of hi is pt . 
Then the expected loss for strategy s rela-
tive to P is 

£ ( i \ . ) = 2 P i ( i - P - r ) + 

X Ai+di / 

= l ~ ( l - r ) ( A + l ) \ l - 2 f i * -L ; - 1 At + « I 

Thus we can minimize L(P ,s) by minimi-
« A p 

xiaS 2 ——!—~— subject to the conditions 
i Ai-y cti 

that 2 « i = 1? 0 I l ti « i ^ O for all i. Choose 
i 

a fjc such that p^ > 0 ; then 

dL (P,*) 
à a i 

_ / AtPi -np-FP \ 
à ( At + at f ^ + i _ 2 «y) ) 

\ i / 

vielding • = . .. f o r those 
(Ai + a i ) a M p + o ï i ) 8 

i where > 0, which gives 

\jAj pj (Aji. -4-
ai 1 -ili . 

Appp, 

Noting that 

2 2 A ; , 
t ^ (1 V^lll./'fl i zp (1 
Pi>0 

. l / ^ p . 4 1 + i 0 ) . we have a«- = - - J,' • • where 

2 V -4, 

•̂ o = 2 ^ • 
T 

P, > 0 

Thus by substitution, 

VAt pi(l + A0) 

«t-
Z/A-p, 

L(P,s) = 

• Ai and 

( 2 J A i p i f -1 

I 1 1 + An J ' 
= 1 — (1 — r ) ( . 4 ' + 1) 

Now suppose that the p, 's are propor-
tional to the track returns A\ , • - - , A„ , say 
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pt = Ai/A . Then A0 A , a ( = and 

7_(P,s ) = 1 — (1 - r ) ( A + 1 - A*/A) = 
« 1 — (1 — r) = r . 

Tliis is obviously BAYES against P = 
= (Al/A,A2/A) ,AnjA) and since it has 

constant risk, it is a minimax solution. Thus 

betting according to this strategy, the better 

cannot lose more than 100 r per cent of his 

unit bet, no matter what the real probability 
distribution is on hx, • - - , Itn . This system 
is easy to use in any real gambling situation 
since one does not have to bother estimating 
P , but like all minimal strategies it is quite 
pessimistic. Thus, if the better could actually 
estimate P with some sucess, it would be to 
his advantage to go through the more com-
plicated mathematics of the general solution. 

Before leaving this discussion, let us note 
that if a.i is small W. r. t. Ai (as it would 
probably be), then 

/ . ( P . O ^ l - t l - r X ^ + l ) 

which is maximized by taking p,-/At largest 
and sotting a; = 1 . This is equivalent to 
choosing At/pi smallest, which is in effect 
what BOBBL'« method told us to do. 

Another approach to the pari-mutuel 
betting problem has been given by R . CLAY 

SPKOWI. in 1950 . I t is a r e l a t i v e l y c rude 

method, but the approach is quite different 
from either one that we have considered so 
far. 

SPROWL leaves aside the question of how 
one should bet, and considers only the 
question «When?» He assumes that the 
better has a system which works with pro-
bability p (p being unknown). If he assumes 
that the payoff is ( P — 1 ) if he wins on a 
unit bet (here ( P — 1) corresponds to the 

odds : or 1 — — in our old 
Ai + 1 

notat ion) , his expectat ion is x(p) = 

= ( P — l ) p — (1 —p ) . Now if we plot this 
as a function of p, we get a straight line 
which intersects the p-axis at the point pQ. 

Now pQ is a function of P , and this is the 
cornerstone of his paper. Given P , deter-
mine p<j = 1 /P . I f p~>Pot bet; otherwise 
do not. The better, however, must determine 
what p is and the rest of the paper is de-
voted to a decision-theoretic derivation of 
the natural estimate (number of previous 
wins)/(number of races bet). He ends his 
discussion with the first real experiment 
published in the field. He uses two systems; 
the first being bet the favorite, the second 
being bet the favorite if p where j? is 
the proportion of wins in the previous n 
races if he had bet the favorite. The re-
sults are: 

Sistem I Sis t em 11 

Races Bet 75 23 
Races Won 20 4 
Total Bet 5150.00 546.00 
Total Won <5128.50 550.60 

Profit 5-21.50 5 4.60 

Interpretation of the results are left to the 
reader. 

The most recent article on the subject is 
by RICHARD N. ROSETT. It was published 
in 1965 in, of all places, The Journal of 
Political Economy. The motivation behind 
his research is the query as to whether gam-
blers are rational. He formulates a rationa-
lity hypothesis as follows. 
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If a gambler must choose between two 
single return bets in which he risks losing 
one unit, he will : (a) if the probabilities of 
winning are equal, choose that bet with the 
greatest return; (J) if the returns are equal, 
choose that with the greatest probability; 
(c) always choose an event which in both 
return and probability of occurrence are 
greater than in the other. 

Three systems of betting are discussed in 
the paper; the first is called the Martingale 
and works like this: Select n horses each 
running in a different race, and suppose 
they pay , . . . , Hn in returns, and that 
there exist some actual probabilities^, ... p„ 
of their winning (here subscripts denote the 
order of the rnnning of the race). Split your 
bet into sums of money «1, a2, . . . , « » so 

n 
that 2 = 1 a n d «i > 0 , and — 1)— 

i - 1 
— 2 «y - S fiw t = 1, . . . , n. Solve this 

j— 1 
system of equations for the «j 's and bet «* on 
your choice in the ith race, but do this se-
quentially until either all n races have been 
bet, or a race is won. I f you lose all n 
races, you lose one unit with probability 

n 
I (1 — pi). If one of the horses wins (with 

> - 1 
A 

probability 1 — X I (1—Pd}? you win B . 
• =•1 

This method combines low-probability, high 
return bets, into one system with high pro-
bability and low return, 

A parallel system for a single race can 
also be constructed. (SPBOWL calls it the 
combination.) Again, split your bet into 
amounts a|, . . . , (note that k is not ne-
cessarily equal to the total number of 
horses running in the race), but according 
to the system of equations : «/(./?; — 1) = B 

k 
t •= 1 ... , A and 2 = on all k 

i—1 
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horses. If pf ie the proability of h, y the 
* 

better wins B with probability 2 

<•= 1 
k 

ses one with probability 1 — 2 P< • This is 

1=1 
again a high probability, low return bet. 

The final system is called the parlay and 
consists of choosing n horses in n races and 
betting 1 unit on the first choice in the first 
race. If you win, bet Rj on the choice in the 
second race and continue until you lose a 
race or win all n. If you win, the return is 

« n 
I I ~ 1 with probability J ] p,, and the 
j ' - ! / —1 
loss is 1 (although much greater from a 
Regret point of view if one were to win 
the first n — 1 races) with probability 

n 
1 — n / ' ' ' This is a high-return low prob-

• = 1 
ability bet. It must be emphasized, that all 
the choices in the above three systems are 
made at one time, so in effect they comprise 
a single system or a single bet. 

Now, assuming that the betters form a 
market (this is similar to the perspective of 
El SEN REE G and GALE), the rationality hypo-
thesis (which is equivalent to a functional 
relationship between R and p which is mo-
notone decreasing in p), and the possibility 
of combining bets through parlays and 
Martingales, place certain constraints on 
the function relating return to probability of 
winning, which are: 

Given any probability of winning p* and 
the return associated with it R*, then 

(l-p)']-' if O^p^p* 

[1 — ( l — p y ] - ^ j t { p ) ^ p r if 

where R is the return associated with p at 
equilibrium and subject to the rationality 
hypothesis, r = In R" j ln/>* , and 

c = In (1 - l/J?*)/ln( l —p m ) . 
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Let us give some indication of how these 
limits are derived. Suppose p* ^.p 1 and 
R(p)>pr. Choose such a p*, then there 
exists a q such that p q = p* with q > p* , 
and then logP-p 4* logP« q = 1. Now take 
a bet with probability p and another with 
probability q and form a parlay. The return 
is R(p)R(q) with probability p q = p* , but 
since p,q>p*, R (p) R (?) > R**->plla'* . 

= a * . Thus we have a bet 
(p*,R(pq)) which has for the same prob-
ability, a greater returnt Hence, (p* ,R*) 
would never be chosen, which is a contra-
diction since this is the equilibrium rela~ 
tionship. Similarly, suppose that R(p)<^ 

[>" U - P) "1-1 
I — l/ f l * )Mi - P ' >J • 

Form a Martingale from n bets like ( p * , R * ) 

such that p = 1 — (1 — p*)n . From the ra-
tionality hypothesis, i ? ( p ) - i ï ( l — ( l - p * ) n ) . 
But the return from the Martingale is 

— ( i — i / * * ) « ] - ! - [ i - ( i - x i iryy I 

I n ( l - p ) » l n ( l — p*) 
since c •=• -—l = — '•• i—'- =. n bv 

l n ( l — p * ) In (1 —j » » ) 
construction. This Martingale has the same 
probability of winning as the initial bet, but 
the return is greater. Thus according to the 
rationality hypothesis, the first bet would 
never be chosen which is a contradiction. 
Similar manipulations will verify the inequa-
lities for O ^ p ^ p * , 

Now R(p) = p' is the only function rela-
ting returns to probability for which it is 
true that for every bet on a single horse 
any parlay having the same probability 
will pay the same return. Similarly /?(p)=-
= [1 — (1—py]~ l is the only function rela-
ting returns to probability, for which it is 
true that for every bet on a single horse, 
any Martingale having the same probabi-
lity will pay the same return. 

Let us verify this assertion. Select bets 
with probabil i t ies p i , " - , p n such that 

a 
then ^ th® above relation holds, 

i 

the return is = = 

Now suppose that we have any other 
function R = f ( p ) which has the properties: 

(6) / is monotone decreasing over (0 ,1 ) 
(note: (a) assures ns of the proper 
parlay relationship, (6) is necessitated 
by the rationality hypothesis), and 

(c) f does not have the form f(j>)=pr, 

choose two values px, p2 and find R\=f(p), 

R*~f(p2) 80 that f{px)=p\> f(p2) = pr2 

where rx > r2 (note that r2 < rx < 0). Thus 
for all p in ( 0 ,1 ) , pT> < pr-. 

Since (pi , RX) and (p2 , i?2) both satisfy 
(a), so do all points of form ( p f , R f ) , 
(p™, R^) where n and m are positive inte-
gers. Suppose we found a point ( p ™ ' , ^ ' ) 
such that p2*>p™* for some m0 and nB • 
Then since P™'> P*' implies P2'T,~>PX,R% 

and r, > r3 implies pj" i>-p™"'' then = 
= P%,T* > PI'T' = and we would violate 
the rationality (and thus the monotonicity) 
property. To see that this always occurs 
look at the line R = R » + i (i. e., i? 1 (p ; + 1 ) ) ; 
it intersects the curve R^^p ' * at the point 
pi =(^+i ) » r>=(^+i ) r</ r ' . Now (pJ+')'</r>>^ 

if and only if n > r"r3— (remember that 
1 — rxjr2 

both rx and ra are negative, so < 1). 
Thus we have a point (p2 , 7?(pa)) such that 
Pi which gives us the violation of the 
rationality hypothesis. Thus R ( p ) = p r is 
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the unique functional form satisfying (a) 
and ( i ) . 

Let ns now show that i? (p)=[ l—(1—p)*] - 1 

is the unique function satisfying the requi-
rement that any Martingale for which the 
probability of winning is p0 will yield the 
return R0. 

Select n gambles such that 

i - I I a = ? o 

and so lve the system of equations 

« ! ( # ! , - 1 y - B i «1 C-Hi — 1 > — 

2a,- = 1 for the a,'s . Now a x —k/Ri— 1, 
^ = fc (1/P, — X)fJ2j - - 1)) and 
in general 

1 + + ••• + 
/ 4 . - 1 (/?„, ~ l) (J?m_ t ) 

+ -1-- - . 
(Rm - - 1) ...(/?! — 1) 

so k 

Now from the Martingale relationship 

1 

thus S/ — — p,f = 1, so 

1 - (1 - p y 

Bi—1 

Ri 

= (1 —Pif and ( 1 - p , ) " 

. Therefore 

R, 

R, - 1 
' 1 . + 

[ n a - ^ i ] 
(1 - P 0 Y 

[ i - ( i -PoY] 
= c i - a - poïr1 - 1 • 

So if we forget about the scale factor a — 1,» 
we see that for any Martingale such that 

n 

i - 1 
The «combinationi bet gives an upper 

limit of R ^.p* R* /p for p < p* , and 
R^,p*R*/p for p > p * but parlay and 
Martingale limits are always better, so 
gamblers would never use a combination. To 
complete the proof we would need to show 
that given (p* , R * ) , 

[1 — ( 1 — i f p ^ p * 

P r ^ [ l — (1— p) ' ]"1 if P ^ P * 

where 

In f í * ln ( l — 
r — ——•—c :— v ' 

lnp* ln ( l — p* ) ' 

Ri— 1 

so that our equilibrium equations make sense. 
The proof is not relevant to the paper and 
can be found in [3]. 

If there were a strong performance for 
parlay type bets in a market, then the obser-
ved relationship between probabilities and 
returns should be R = pT. Similarly, if 
the preference where for Martingales, then 
the relationship would be approximately 
R = [1 _ (1 — p)=]-> . Since both of these 
functions are monotone decreasing over (0,1) 
and thus satisfy the rationality hypothesis, it 
is impossible to distinguish between these 
functions as models for actual betting situa-
tions on strictly theoretical grounds. Accor-
dingly Bo SETT took the odds and subsequent 
wins of 110,000 horses and arranged them 

: 
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(in descending order by odds) into groups of 
abont 350. He then estimated Ji and p for 
each group by simple averaging. (If a group 
did not contain a win, he angmented it until 
it had one). The resultant 257 pairs of points 
(p,R) were then fitted to two equations: 

(a) l n ( l _ i ? - i ) = « , - f - c 1 l n ( l - , p ) ± 

+c3ln2<l - p ) , 

(b) \nR = rQ + j-| Inp + i-sln2p . 

Note that (a) would fit the Martingale 
relationship exactly if c 0 = c a = 0 and c, = 1 . 
Similarly, (b) would fit the parlay relation-
ship if r0 = r2 = 0 and = 1. Using 
standard regression analysis, both (a) and 
(6) were fitted to the data yielding the 
equations: 

(a) In (1 — = — 0.0078 + 
(0.0216) 

+ 1.15 In (1 — p ) + 0.09 In3 (1 — p), 

(0.02) (0.03) 
(standard deviation) 

(b) In R= -0.365—1.27 In />-0.0741n2 p 

(0.06) (0.04) 0.007) 
(standard deviation) 

Note that c2 is significantly different from 
zero, which suggests that the Martingale 
limit does not hold for all p , Further 
r0,rl} and r2 are all significantly different 
from zero suggesting that the parlay relation 
does not hold for all p . 

The data was then re-examined, and it was 
found that for p < .02 , the returns were 
very much lower than would be expected 
under either model. Removal of these 40 
points resulted in the following two equations: 

In # = — 0.05 — 0.96 In p — 0.007 ln»p 
(0.08) (0.07) (0.014) 

(standard deviation) 

In (1 — A- ' ) = 0.0073 + 1.15 In (1 — p) + 

(0.24) (0.03) 
-f- 0.092In2(l — p) 

(0.037) 

(standard deviation) 

Note that in the first equation only r { is si-
gnificantly different from zero, as are both 
C] and c3 in the second. The conclusions is 
that the Martingale relationship does not 
hold for this set of data, and that the parlay 
relationship estimated at R = p-0-s<> holds 
for .02 ^p ^ 1 . ROSETT theorizes that the 
marked deviation from this formula for 
p < .02 is due to either or both of the two 
phenomena. The first is that some betters 
bet in a purely random fashion (e. g., bet on 
numbers, or on names), accordingly placing 
too much money on very low probability 
horses, thereby decreasing their return. The 
second phenomenon is that there exist betters 
who are so interested in getting a very large 
return that they always choose the long 
shots to form parlays. Since this choice is 
made without consideration of the true prob-
abilities of winning, it has the same effect 
on low probability bets as does random 
betting. 

The conclusion that ROSETT reaches is 
that gamblers are either relatively sophisti-
cated probabilistically or follow sophisticated 
advice. I feel that this too strong a state-
ment. Let us note that the empirical rela-
tionship is approximately R = 1 /P and since 
the return is really the odds plus one, we 
see that the betters have been betting in a 
fashion which might be considered optimum 
on a purely theoretical basis. A better con-
clusion to draw for the data then is that 
betters as a group seek to be quite accurate 
in ascertaining the underlying probability 
structure of the various races bet upon, but 
that individually, the betters are not neces-
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sarily acting either rationally or in a pro-
babilistically sophisticated fashion. 
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M O V I M E N T O M A T E M Á T I C O 

CENTRO DE ESTUDOS MATEMÁTICOS D O PORTO 

A convite do Instituto de Alta Cultura deslocou-se 
ao Porto em Março de 1967 o Professor JEAH CEIIF, 

especialista de topologia diferencial da Universidade 
de Paris. Durante a nua estadia de cerca de um mês, 
este professor realizou um curso sobro o teorema do 
A-cobordisrao (de Smale), assunto que se relaciona 
com o seu presente trabalho de investigação. Antes 
da vinda do Professor JEAH CERF, organizou-se no 

C. E. M. P. uma série de «posições preparatórias 
que versaram os assuntos seguintes: variedades dife-
renciáveis (definições gerais), topologia C*, teorema 
de Sard (sobre a medida do conjunto dos valores 
críticos de nma aplicação diferenciável) e o teo-
rema de Morse (sobre a densidade do conjunto 
das funções cujos pontos críticos são todos não dege-
nerados). 

NOT IC IÁR IO BRASILEIRO DE MATEMÁTICA 

Publicações do IMPA —No decurso de 1968 o 
IMPA publicou os seguinte* trabalhos, no âmbito da 
Colecção Notas de Matemática: 

Malgrange Theorem tor Nuclearly Entire Functions 
of Bounded Type on a Banach Space, by C. GUFTA. 

Notas de Matemática i>.° 37. 

Suporta of Convolutions, by A, DIEQO. Notas de 
Matemática n* 38. 

A Theory of interpolation of Normed Spaces, by 
J. PEETRE. Notas de Matemática n.° 39. 

Introdução à Teoria das Probabilidades para Ma-
temáticos, por G. RABSON. 

Novo morado do IMPA — E a seguinte a nova 
morada do Instituto de Matemática Pura e Aplicada: 
Rua Luiz de Camões, 68, Rio de Janeiro 58, GB, 
Brasil. J. M. H. 

LIÇÕES DE MATEMÁTICA PARA PÓS-GRADUADOS N A FACULDADE DE CIÊNCIAS DE LISBOA 

No âmbito do Plano Intercalar de Fomento, efec-
tuaram-se na Faculdade de Ciências de Lisboa duas 
séries de conferências sobre temas de "Matemática 
e suas aplicações*, com o fim de abrir novos hori-
zontes sobre sectores diversos da problemática actual. 
As primeiras conferências versarão os seguintes 
temas: 

Matemática Pura: Axiomática dos eonjuntoB, — 

pelos Doutor J. SANTOS GUBBHXIBO e Dr. J. SILVA OLI-
VEIRA; Intuicionismo, pelo Dr. A. VAZ FERREIRA; 

Matemática Aplicada: Axiomática da Termodinâ-
mica, pelo 1'rof. Ur. J. PINTO PEIXOTO; Turbulência e 
Geometria dos vértices era oceanografia, pelo Ten, DA-
NIEL RODKIOCKS; Computadores e linguagens de pro-
gramação, pelo Dr, A. CADETE; Optimização pelo 
D r . GUSTAVO DR CASTRO. J. T, O. 


