On abelian groups with the unique square root property

by José Morgado

Instituto de Fisica e Matemática, Universidade Federal de Pernambuco, Brasil

1. It is well known that, if G is a finite group (multiplicatively written), then each element of G has a square root, if and only if the order of G is odd ([1], Theorem 1, and [2]).

Recently, we have obtained a characterization of the groups which admit a Jacobi automorphism. We have stated that a group G has at most one Jacobi automorphism, and that such an automorphism exists, if and only if G is an abelian group having the unique square root property (i. e., for each element $x \in G$, there is exactly one element $y \in G$ satisfying the condition $\left.y^{2}=x\right)$.

In this note we obtain some results about the abelian groups having the unique square root property.
2. Let us state the following

Lemma 1. If x is an element of odd order of a group G and y is a square root of x , then one has either ord $\mathrm{y}=$ ord x or ord $\mathrm{y}=$ $=2$ ord x .

Proof. Indeed, let ord $x=2 n-1$. Since $y^{2}=x$, one has

$$
y^{2(2 n-1)}=x^{2 n-1}=1
$$

and so y is an element of finite order.

If ordy is odd, say $2 m-1$, then one has $(2 m-1) \mid 2(2 n-1)$, hence

$$
(2 m-1) \mid(2 n-1) .
$$

On the other hand, one has

$$
x^{2 m-1}=y^{2(2 m-1)}=1
$$

and so $(2 n-1) \mid(2 m-1)$.
Consequently, ord $y=$ ord x.
If $o r d y$ is even, say $2 m$, then from $y^{2}=x$, it follows

$$
y^{2(2 n-1)}=x^{2 n-1}=1=y^{2 m}=x^{m},
$$

meaning that $2 m \mid 2(2 n-1)$ and $(2 n-1) \mid m$, hence ord $y=2 \cdot \operatorname{ord} x$, as wanted.

Lemma 2. If \mathbf{x} is an element of odd order of a group G, then there is exactly one element $\mathrm{y} \in \mathrm{G}$ such that

$$
\mathrm{y}^{2}=\mathrm{x} \text { and ord } \mathrm{y}=\text { ord } \mathrm{x}
$$

and this element y belongs to the cyclic subgroup generated by x .

Proof. Let ord $x=2 n-1$. Then, since

$$
\left(x^{n}\right)^{2}=x^{2 n-1} \cdot x=x
$$

one sees that x^{n} is a square root of x and obviously x^{n} belongs to the cyclic subgroup
generated by x. Moreover, if $y^{2}=x$ and ord $y=\operatorname{ord} x$, then

$$
y=y^{2(2 n-1)+1}=\left(x^{n}\right)^{2(2 n-1)+1}=x^{n}
$$

proving the lemma.
Theorem 1. If T is the set af all elements of odd order of an abelian group G, then T is a subgroup of G having the unique square root property.

Proof. The set T is clearly non void, since $1 \in T$. Moreover, since ord $\left(a^{-1}\right)=$ ord a and $\operatorname{ord}(a b)=\operatorname{ord} a \cdot$ ord b for all a, b in T, on sees that T is a subgroup of G. By Lemma 2, for each $a \in T$ there is exactly one element x such that $x^{2}=a$ and ord $x=$ $=$ ord a and this element belongs to the cyclic subgroup generated by a, hence $x \in T$.

If ord $x \neq \operatorname{ord} a$, then, by Lemma 1, one has ord $x=2$ ord a and so x does not belong to T.
3. If G is a torsion free abelian group such that for each element $a \in G$ there is some x satisfying the condition $x^{2}=a$, then G has the unique square root property. In fact, if $x^{2}=y^{2}=a$ with $y \neq x$, then $\left(x y^{-1}\right)^{2}=x^{2}\left(y^{-1}\right)^{2}=a \cdot a^{-1}=1$, contradicting the hypothesis that G is torsion free.

Let G be a group with the unique square root property. Then, there his no element x in G with even order. In fact, from ord $x=2 m$ it follows $\left(x^{m}\right)^{2}=1$ and so 1 and $x^{m} \neq 1$ would be square roots of 1 , against the hypothesis. Thus, the set T formed by all elements in G having odd order is the maximal torsion subgroup of G and, therefore, the quotient group G / T is torsion free. If $a T \in G / T$ and $x^{2}=a$, then it is immediate that $(x T) 2=a T$.

Consequently, the following holds:
Theorem 2: If G is an abelian group with the unique square root property and T
is the set of all elements in G having odd order, then G / T is a torsion free abelian group with the unique square root property.
4. Now, let H be a torsion free abelian group having the unique square root property. We shall denote by $x^{1 / 2}$ the (unique) square root of x. More generally, we shall denote by $x^{m / 2^{n}}, m$ and n integers, the square root of $x^{m / 2^{n-1}}$.

This notation is consistent, since

$$
x^{m / 2^{n}} \cdot x^{m^{\prime} / 2^{n^{\prime}}}=x / m 2^{n}+m^{\prime} / 2^{u^{\prime}} .
$$

Let $a \in H$. It is immediate that the least subgroup of H containing a and having the unique square root property is the set of all elements a^{r}, where r is either 0 or a rational number of the form $\frac{2 m+1}{2^{n}}$, where m and n are integers.

Let us denote this group by $S(a)$. It is immediate that this group is isomorphic to the additive group whose elements are 0 and the rational numbers of the form $\frac{2 m+1}{2^{n}}$, with m and n integers.

Theorem 3. For each $\mathrm{a} \in \mathrm{H}$, the lattice of all subgroups of the group $\mathbf{S}(a)$ is distributive.

Proor. Indeed, as it was stated by Ore [4], the lattice of all subgroups of a group is distributive, if and only if the group is locally cyclic.

Let us see that the group $S(a)$ is locally cyclic, that is to say, if $x, y \in S(a)$, say

$$
x=a^{(2 m+1) / 2^{n}} \text { and } y=a^{(2 r+1) / 2^{2}}
$$

then there is some $z \in S(a)$ such that x and y belong to the cyclic subgroup generated by z. It is sufficient to set $z=a^{1 / 2^{p}}$, where p is the greatest of the integers n and s.

Theorem 4. For each $\mathrm{a} \in \mathrm{H}$, the lattice of all subgroups of $\mathrm{S}(\mathrm{a})$ having the unique square root property, is isomorphic to the lattice constituted by the set of all positive odd integers partially ordered by the relation $\mathrm{m} \leqq \mathrm{n}$ if and only if m is divisible by n .

Proof. Let A be a subgroup of $S(a)$ having the unique square root property. If $a^{(2 m+1) / 2^{n}} \in A$, then $a^{2 m+1}$ and $a^{-(2 m+1)}$ belong to A. Let $2 p+1$ be the least positive integer such that $a^{2 p+1} \in A$. Then, if $x \in A$, one has $x=a^{(2 p+1)(2 q+1) / 2^{n}}$ for some integers q and n.

This means that $A=S\left(a^{2 p+1}\right)$.
Thins, one sees that there is a one-one correspondence between the set of all subgroups of $S(a)$ having the unique square root property and the set of all positive odd integers.

Moreover, one has clearly

$$
S\left(a^{2 m+1}\right) \subseteq s\left(a^{2 p+1}\right)
$$

if and only if

$$
(2 p+1) \mid(2 m+1),
$$

completing the proof.
The group H may be considered as a module over the ring R formed by all rational numbers $0, \frac{2 m+1}{2^{n}}, m$ and n integers, relatively to the ordinary addition and multiplication. The set $S(a)$ the cyclic submodule generated by a.

The theorem 4 above says that the lattice of all submodules of $\mathbf{S}(\mathrm{a})$ is isomorphic to the lattice of all positive odd integers, $\mathrm{m} \leqq \mathrm{n}$ meaning that n divides m .
5. For each $a \in H$, let us denote by $C(a)$ the cyclic subgroup generated by a.

Let us consider the quotient group $S(a) /$ $/ C(a)$ and let $a^{(2 m+1) / 2^{n}}$ be any element of $S(a)$. If $n \geqq 1$, by the division algorithm, one has
$2 m+1=2^{n} \cdot q+(2 r+1)$, with $0<2 r+1<2^{n}$
q and r integers.
From this it follows

$$
\begin{align*}
& \frac{2 m+1}{2^{n}}=q+\frac{2 r+1}{2^{n}}, \tag{1}\\
& \text { with } 0<2 r+1<2^{n}
\end{align*}
$$

and hence
$a^{(2 m+1) / 2^{n}}=a^{q} \cdot a^{(2 r+1) / 2^{m}} \in a^{(2 r+1) / 2^{m}} C(a)$
If $n<1$, then $\frac{2 m+1}{2^{n}}$ is an integer and
so $a^{(2 m+1) / 2^{n}} \in C(a)$.
Thus, the elements of the group $S(a) / C(a)$ are $C(a)$ and the cosets of the form

$$
a^{(2 r+1) / 2^{n}} C(a)
$$

where n is a positive integer and r is an integer such that $0<2 r+1<2^{n}$.

Let us consider the group $Z\left(2^{\infty}\right)$ ([5], p.4). The elements of the group $Z\left(2^{\infty}\right)$ are

$$
0, \frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{1}{8}, \frac{3}{8}, \ldots, \frac{2 r+1}{2^{n}}, \ldots
$$

with $0<2 r+1<2^{n}$, the group operation being the addition modulo one.

Since the integers q and r in (1) are aniquely determined, one concludes the following

Theorem 5. For each $\mathrm{a} \in \mathrm{H}$, the quotient group $\mathrm{S}(\mathrm{a}) / \mathrm{C}$ (a) is isomorphic to the group Z (2^{∞}).

BIBLIOGRAPHY

[1] W. R. Utz, Square roots in groups, Amer. Math. Monthly, 60 (1953), pp. 185-186.
[2] E. A. FAx, Solution of the problem E 1794 [1965, 545], Amer. Math. Monthly, 73 (1966), pp.892-893.
[3] Josḱ Moraado, Note on Jacobi endomorphisms, in preparation.
[4] Oxstein Ore, Structures and group theory II, Duke Math. J., 4 (1938), pp. 247-269.
[5] Invina Kaplansex, Infinite abelian groups, Ann Arbor, 1954.

