Integral de Riemann-Stieltjes num espaço localmente compacto

Ruy Luís Gomes

Porto

O Curso de Analyse Infinitesimal de Gomes Teixeira, cuja primeira edição foi publicada no Porto em 1889, assenta, no que respeita a Integração, na definição de Cauchy, do integral de uma função continua num intervalo [a, b].

Ora, estando a «Gazeta de Matemática» a organizar um: número comemorativo do 1.º centenário do nascimento do grande Mestre e Investigador, parece-nos de verdadeiro interesse para os estudantes das nossas Escolas Superiores, uma exposição simples e actualizada da noção de integral, tendo precisamente como ponto de partida a definição de Cauchy.

Assim, este artigo trata no essencial, do prolongamento por continuidade do integral de Cauchy; mas de modo a abranger o integral de Riemann e o integral de Stieljes. E ainda com a vantagem didática de utilizar um método que nos conduz directamente, ao integral de Lebesgue-Stieljes num espaço localmente compacto, ou seja, às mais modernas teorias da integração.

Resumo

Constroi-se a noção de integral de Riemann-Stieljes de uma função limitada, de suporte compacto em E, pelo prolongamento por continuidade de uma funcional linear e não-negativa no sub-espaço L das funções contínuas, de suporte compacto em E. Para isso introduz-se uma topologia conveniente no espaço $\mathcal F$ das funções limitadas, de suporte compacto e recorre-se ao teorema fundamental do prolongamento por continuidade (4). Dá-se uma condição necessária e suficiente de integrabilidade em termos de medida de Lebesgue-Stieltues. Mostra-se que a definição de função integrável coincide com a definição clássica de Stieltues quando E se reduz a um intervalo fechado de R^1 . Estende-se a definição ao caso de a

funcional ser linear e contínua (em termos da topologia da convergência uniforme).

Relaciona-se a definição do texto com a generalização de integral de Stieljes, devida a Pollard.

1. - O espaço topológico F.

Designemos por E um espaço localmente compacto e por \mathcal{F} a classe das funções numéricas, limitadas, de suporte compacto (2) em E.

Proposição 1. F é um espaço de Riesz (3) (espaço vectorial reticulado).

Na verdade se f_1, f_2 pertencem a \mathcal{F} , o mesmo sucede a $c_1 f_1 + c_2 f_2$, a $f_1 \cap f_2$ e a $f_1 \cup f_2$, quaisquer que sejam os números reais c_1, c_2 .

As funções contínuas, de suporte compacto formam um sub-espaço (de Riesz) de \mathcal{F} . Designá-lo-hemos por L.

Se E é compacto, F coincide com a classe das funcões limitadas e L com a das funções continuas.

Teorema 1. A condição necessária e suficiente para que fe \mathcal{F} , é que existam funções $\varphi_1 \leqslant \varphi_2$ de L, tais que $\varphi_1 \leqslant f \leqslant \varphi_2$ para todo x de E.

Na verdade, se f admite o infimo l e o supremo \mathcal{L} e é nula no complementar dum conjunto compacto $K \subset E$, podemos tomar $\varphi_1 = l \varphi_0$ e $\varphi_2 = \mathcal{L} \varphi_0$, sendo φ_0 , contínua, de suporte compacto, igual à unidade em K(4).

Inversamente, de $\varphi_1 \leqslant f \leqslant \varphi_2$ deduz-se que $f \in \mathcal{F}$.

⁽¹⁾ BOURBAKI — Livre III, Chap. I, § 6, p. p. 37-38 e Ruy Luis Gomes «Integral Lebesgue-Stieltjes», J. I. M., Porto, 1952.

^(*) De suporte compacto, quere dizer, nulas no complementar de um conjunto compacto, que pode variar de função para função.

⁽³⁾ Designação introduzido por Dieudonné [Bull. Soc. Math. France; t. 72, 1944, p. 193-194].

⁽i) Se E não é compacto tem-se $l \le 0$ e $0 \le L$. Por outro lado, dado um conjunto com acto, $K \subseteq E$, é sempre possível determinar uma função como φ_0 [cf. Bourbaki, Livre III, Chap. IX, § 4, Cor. Prep. 4]. Se E é compacto, basta fazer $\varphi_1 = l$ $\varphi_2 = L$.

Definição 1. Entende-se por intervalo, a classe das funções f de \mathcal{F} tais que $\mathfrak{P}_1 \leqslant \mathfrak{f} \leqslant \mathfrak{p}_2$, sendo $\mathfrak{p}_1 \leqslant \mathfrak{p}_2$ duas funções de L. E representa-se pelo simbolo $[\mathfrak{p}_1,\mathfrak{p}_2]$.

Definição 2. Entende-se por vizinhança de uma função f de F, qualquer intervalo que contém f.

Proposição 2. Estas vizinhanças transformam F num espaço topológico (de Kuratowsky).

Com efeito: 1) toda função $f \in \mathcal{F}$ admite uma vizinhança; 2) toda vizinhança de f contém f; 3) dadas duas vizinhanças de f existe sempre uma vizinhança contida na intersecção daquelas. (5)

Daqui por deante interpretamos sempre \mathcal{F} como um espaço munido desta topologia. E é evidente que, segundo essa topologia, L é denso em \mathcal{F} , quere dizer, o fecho de L coincide com o próprio espaço \mathcal{F} :

2. — Integral superior e Integral inferior de Riemann-Stieltjes

Representemos por $F(\varphi)$ uma funcional linear e não-negativa (6) em L, isto é, uma funcional definida em L e tal que

$$F\left(c_{1}\,\varphi_{1}+c_{2}\,\varphi_{2}\right)=c_{1}\,F\left(\varphi_{1}\right)\,+\,c_{2}\,F\left(\varphi_{2}\right)\,,$$
 para $\varphi_{1}\,,\,\varphi_{2}\in L\,,\;\;c_{1}\,,c_{2}$ números reais ; $0\leqslant F\left(\varphi\right)$ para $0\leqslant\varphi$.

Definição 3. Entende-se por integral superior e integral inferior Riemann-Stieltjes de uma função f.e.f., os números representados e definidos respectivamente por

$$\overline{\overline{F}}(\varphi) = \inf_{(V)} \left[\sup_{\varphi \in V} F(\varphi)\right], \ F(\varphi) = \sup_{(V)} \left[\inf_{\varphi \in V} F(\varphi)\right]^{(V)}$$

sendo (V) a classe das visinhanças de f.

TEOREMA 2. Os integrais — superior e inferior — são sempre finitos e, àtém disso, $F(f) \leqslant \overline{F}(f)$, $0 \leqslant F(f)$ e $0 \leqslant \overline{F}(f)$ para $0 \leqslant f$.

Que são finitos deduz-se imediatamente da monotonia (7) de $F(\varphi)$.

Vejamos agora a relação
$$F(f) \leqslant \overline{F}(f)$$
. Como,

por definição, é sempre possível determinar vizinhanças V, V'', tais que $F'(f) < \inf_{\varphi \in V'} F(\varphi) + \varepsilon$, sup $F(\varphi) < \sup_{\varphi \in V''} F(\varphi) < \sup_{\varphi \in$

$$<\overline{F}(f) + \varepsilon$$
, construindo $V \subset V' \cap V''$, resulta
$$F(f) < \inf_{\varphi \in V'} F(\varphi) + \varepsilon \leqslant \inf_{V} F(\varphi) + \varepsilon \leqslant$$

$$\leqslant \sup_{\varphi \in V} F(\varphi) + \epsilon \leqslant \sup_{\varphi \in V''} F(\varphi) + \epsilon < \overline{F}(f) + 2\epsilon,$$

donde

$$\underline{F}(f) \leqslant \overline{\overline{F}}(f)$$
.

Finalmente, se $0 \leqslant f$, a função f admite uma base de vizinhanças em que só figuram funções $\varphi \in L^+$, isto é, da classe das funções de L que são não negativas. E este facto combinado com $0 \leqslant F(\varphi)$ para $\varphi \in L^+$, mostra-nos que $0 \leqslant F(f)$, $0 \leqslant \overline{F}(f)$.

Proposição 3. Tem-se $\overline{\overline{F}}(f) = \overline{\overline{F}}(\overline{f}) = \inf_{\overline{f} \leq \varphi} F(\varphi),$ $F(f) = F(f) = \sup_{\varphi \leq f} F(\varphi), designando por f, \overline{f} os limites inferior e superior, de f.$

Na verdade como V é da forma $[\varphi_1, \varphi_2]$ e inf $F(\varphi) = F(\varphi_1)$, sup $F(\varphi) = F(\varphi_2)$, vem $\overline{\overline{F}}(f) = \varphi \in V$ $\varphi \in F(\varphi) = \sup_{f \leq \varphi} F(\varphi) = \sup_{\varphi \leq f} F(\varphi)$.

Recorrendo ao integral de Lebesgue-Stieltjes (8), — que designaremos pela letra F, ainda se pode escrever

 $\overline{\overline{F}}(f) = \overline{\overline{F}}(\overline{f}) = \mathbf{F}(\overline{f})$ $\underline{F}(f) = \underline{F}(\underline{f}) = \mathbf{F}(\underline{f}),$

pois tanto \overline{f} como \underline{f} são somáveis (1).

Corolário 1. $\overline{\overline{F}}(f) - F(f) = \overline{\overline{F}}(\omega) = F(\omega)$, sendo ω a oscilação pontual de $f \in \mathcal{F}$.

É uma consequência imediata da aditividade de F na classe das funções somáveis, combinada com a propriedade $\overline{\overline{F}}(f) = \overline{\overline{F}}(f)$ e com $\omega = \overline{\omega} = \overline{f} - f$.

Corolário 2. Sejam f_1, f_2 duas funções quaisquer de F. Tem-se $\overline{\overline{F}}(f_1 + f_2) \leqslant \overline{\overline{F}}(f_1) + \overline{\overline{F}}(f_2) e F(f_1) + F(f_2) \leqslant F(f_1 + f_2)$.

Basta recorrer à Proposição 2 e à aditividade de $F(\varphi)$ em L.

⁽⁸⁾ Na verdade, repertando-nos às designações utilizadas no no teorema 1, f admite a visinhança $\left[\varphi_{1}, \varphi_{2}\right]$; toda vizinhança de f contêm f por definição; se $\left[\varphi'_{1}, \varphi'_{2}\right]$ e $\left[\varphi''_{1}, \varphi''_{2}\right]$ são vizinhanças de f, o mesmo sucede a $\left[\varphi'_{1} \cup \varphi'_{1}, \varphi''_{2} \cap \varphi''_{2}\right]$, que está contida na intersecção daquelas.

^(*) Se E se reduz a intervalo fechado I⊂Rⁿ, F(φ) pode ser, por exemplo, o intregral de RIEMANN-STIELTJES da função contínua, φ, em ordem a uma qualquer função não-decrescente.

⁽⁷⁾ Como $F(\varphi)$ é não-negativa, tem-se $F(\varphi_1) \leq F(\varphi_2)$ para $\varphi_1 \leqslant \varphi_2$.

^(*) Cf. H. Cartan — Sur les Fondements de la Théorie du Potentiel, Bull. Soc. Math. France, 69, 1941, p. 73-74 e Ruy Luis Gomes — Integral de Lebesgue-Stieltjes, J. I. M. Porto, 1952.

3. - Funções Integraveis

Definição 4. Diz-se que f é integrável Riemann-Stieltjes em ordem a $F(\varphi)$, $\varphi \in L$, se $F(f) = \overline{F}(f)$ E o valor comum, F(f), desses dois números, chama-se integral de Riemann-Stieltjes de f.

TEOREMA 3. As funções integráveis formam um espaço de Riesz, sub-espaço de F no qual F (f) é linear e não-negativa.

São integráveis, em particular, as funções de L. O integal assim definido não é mais do que o prolongamento por continuidade da funcional linear e não-negotiva, F(\varphi), \varphi \varepsilon L, nos termos da topologia de F. E sabemos que este prolongamento é único.

TEOREMA 4. A condição necessária e suficiente para que fe & seja integrável REMANN-STIELTJES é que os pontos da descontinuidade de f formem um conjunto, D, da medida nula.

É uma consequência imediata de

$$\overline{\overline{F}}(f) - F(f) = F(\omega)$$

e das propriedades do integral Lebesgue-Stieljes $F(\omega)$.

Integral de Riemann-Stieljes num intervalo fechado I ⊂ R¹

Vamos aplicar a teoria desenvolvida nos parágrafos anteriores ao caso de E se reduzir a $I \subset R^1$ e estabelecer as relações que a ligam às definições conhecidas, nomeadamente, a de Stieltjes e a generalização de Pollard.

Em primeiro lugar, como F(v) se reduz, então, a uma funcional linear e não-negativa na classe L das funções contínuas num intervalo fechado [a,b] da recta euclideana, o teorema de Riesz (9) diz-nos que

 $F(\varphi) = \int_a^{\varphi} \varphi(x) d\psi(x)$, sendo o segundo membro o integral de Stieltjes da função contínua φ em ordem à função não decrescente ψ .

Designando por P uma partição qualquer de [a,b] nos sub-intervalos $[x_{j-1},x_j]$, por d(P) a amplitude máxima destes sub-intervalos, por z_j um pouto compreendido entre x_{j-1} e x_j e finalmente por $\Delta_i \psi$ o acréscimo $\psi(x_j) - \psi(x_{j-1})$, tem-se, (10) pela definição de Stieltijes

$$\int_{a}^{b} \varphi \, d\psi = \lim_{d \ (P)=0} S \left(P ; \varphi, \psi \right)$$
$$S \left(P ; \varphi, \psi \right) = \sum_{j} \varphi \left(z_{j} \right) \Delta_{j} \psi.$$

Ora, pode demonstrar-se o

Teorema 5. Seja f uma função limitada no intervalo [a, b].

A definição de integral de Stieltjes em ordem a uma função não-decrescente & coincide com a definição dada anteriormente em ordem à funcional linear não-

-negativa
$$F(\varphi) = \int_a^b \varphi \, d\psi, \varphi \in L$$
. E inversamente.

Na verdade, se existe $\lim_{d (P)=0} \sum f(z_i) \Delta_i \psi$, existem também $\lim_{d (P)=0} \sum L_i \Delta_i \psi$ e $\lim_{d (P)=0} \sum l_i \Delta_i \psi$, em que $L_i = \sup f$ e $l_i = \inf f$ em $[x_{j-1}, x_j]$. E todos estes limites são iguais.

Por outro lado, como ψ não tem mais do que uma infinidade numerável de pontos de descontinuidade, podemos supor que os x_i , $x_i \neq a, b$, não caem em nenhum desses pontos.

Consequentemente, é possível arranjar $\varphi_1 \leqslant \varphi_2$, tais que $\varphi_1 \leqslant f \leqslant \varphi_2$ e $F(\varphi_2) \leqslant \sum_i L_i \Delta_i \psi + \varepsilon$, $\sum_i l_i \Delta_i \psi -$

$$-\operatorname{\mathfrak{e}}\leqslant F\left(\operatorname{\varphi}_{\mathbf{l}}\right)\ \operatorname{donde}\ \underset{=}{\overset{F}{=}}\left(f\right)=\overset{\overset{\longrightarrow}{F}}{F}\left(f\right)=\lim_{d\ D=0}\Sigma f\left(z_{i}\right)\Delta_{i}\psi.$$

Suponhamos agora que $F(f) = \overline{F}(f)$ e sejam $= \varphi_1, \varphi_2$ tais que $\varphi_1 \leqslant f \leqslant \varphi_2, F(\varphi_2) - F(\varphi_1) < \varepsilon$. Vem $\sum_j \varphi_1(z_j) \Delta_j \psi \leqslant \sum_j f(z_j) \Delta_j \psi \leqslant \sum_j \varphi_2(z_j) \Delta_j \varphi_j$. Mas se d(P) é sufficientemente pequeno, pode considerar-se que $\sum_j \varphi_2(z_j) \Delta_j \varphi$, não difere de $F(\varphi_2)$ nem $\sum_j \varphi_1(z_j) \Delta_j \psi$ de $F(\varphi_1)$. Logo, $\lim_{k \to \infty} \sum_j f(z_j) \Delta_j \psi = F(f)$.

Este resultado (11) dá-nos ainda uma justificação da definição de integral Riemann-Stieltjes de uma função $f \in \mathcal{F}$ em ordem a uma funcional linear e não-negativa em L.

Dada agora uma funcional linear e contínua em L, basta decompô-la na diferença (12) $F^+-F^-_-$ de duas funcionais lineares e não-negativas, para ficarmos habilitados a definir o integral de RIEMANN-STIELTJES em ordem a F^+ e em ordem a F^- :

Se f é integravel em ordem a F^+ e a F^- , $F(f) = F^+(f) - F^-(f)$ define o integral RIEMANN-STIELTJES em ordem a uma funcional linear e continua em L.

^(*) Sur certains systèmes singuliers d'Équations Integrales— Ann. Ec. Nor. Sup. 28, Année 1911, p. p. 41, 42, 43. Cf demonstração de H. Lebesque in Leçons sur l'Intégration, Paris, 1928, 2 éd., p. 265.

⁽¹⁹⁾ Notações de Graves in The Theory of Functions of Real Variables, New-York, 1946, p. 260.

⁽¹¹⁾ Quando $\psi = x$, $F(\varphi)$ coincide com o integral de CAUCHY, $\int_a^b \varphi \, dx$, e o prolongamento de $F(\varphi)$ conduz-nos ao integral de RIEMANN.

⁽¹²⁾ Resultado conhecido. Ver uma demonstração em Integral de LEBESGUE-STIELTJES, já citado.

Finalmente se E se reduz a $I \subset R^1$, $F'(\varphi) = \int_a^b \varphi(x) dv(x)$, sende v(x) uma função de variação total limitada (13), e a definição anterior coincide com a definição clássica de integral em ordem a uma função v(x) de v.t.l.

Em 1923 Pollard introduziu (14) os integrais — superior e inferior—de Riemann-Stieltjes nos termos destas expressões

$$\int_{a}^{b} f d \psi = \inf_{P} \bar{S}(P; f, \psi)$$
$$\int_{a}^{b} f d \psi = \sup_{P} \underline{S}(P; f, \psi),$$

nas quais

$$\bar{S}(P; f, \psi) = \sum_{i} \mathcal{L}_{i} \Delta_{i} \psi,
\underline{S}(P; f, \psi) = \sum_{i} l_{i} \Delta_{i} \psi$$

 \mathcal{L}_j sup f em $[x_{j-1}, x_j]$, l_j inf f em $[x_{j-1}, x_j]$. Sujeitando a partição P à condição de nenhum dos pontos x_j , diferentes de a e b] cair num ponto de descontinuidade de ψ , veem os integrais

$$\int_{a}^{b} f d \psi = \inf_{P} \overline{\overline{S}} (P; f, \psi)$$
$$\int_{a}^{b} f d \psi = \sup_{P} \underline{S} (P; f, \psi).$$

Ora, vamos demonstrar o

Teorema 6.
$$\int_a^{b} f d \psi = \overline{\overline{F}}(f), \quad \int_a^b f d \psi = \underline{\overline{F}}(f).$$

Basta observar que: dada uma função φ , tal que $f \leqslant \varphi$, é possível arranjar (15) uma partição admis-

sivel que verifique
$$\bar{\bar{S}} \leqslant F\left(\varphi\right) + \varepsilon$$
, donde $\int_{a}^{\bar{\bar{c}}_{b}} f d\psi \leqslant$

Inversamente, dada uma partição admissível, como os seus pontos de divisão são pontos de continuidade de ψ , é possível arranjar φ , tal que $f \leqslant \varphi$ e $F(\varphi) \leqslant$

$$\leqslant \overline{\overline{S}} + \varepsilon$$
, donde $\overline{\overline{F}}(f) \leqslant \int_a^{\overline{\overline{b}}} f d\varphi$.

Logo, $\int_a^b f d\psi = \overline{\overline{F}}(f)$ e do mesmo modo se mostraria que $\int_a^b f d\psi = F(f)$.

Corolário 3. Tem-se sempre
$$\underbrace{\int_a^b f \, d\, \psi}_a - \int_a^{\overline{b}_b} f \, d\, \psi = \underbrace{\int_a^{\overline{b}_b}}_a \omega \, d\, \psi \, .$$

Se ψ é continua no interior de [a,b] os integrais $\int_a^{b} \int_a^{b} \int_a^{b} coincidem$ com os de Pollard e vem a fórmula (16)

$$\int_a^b f d\psi - \int_a^b f d\psi = \int_c^b \omega d\psi.$$

⁽¹⁸⁾ Teorema de RIESZ, loc. cit.

⁽ii) The Stieltjes Integral and its generalizations - Quart. Jour. Math., 49, 1920-1923, p. p. 73-138.

⁽¹⁵⁾ Note-se que una infinidade numerável de pontos de descontinuidade.

⁽¹⁶⁾ POLLARD, loc. cit. Ver uma demonstração totalmente diferente da do texto, em E. W. Hobson — The theory of Functions Vol. I, Cambridge, 3 ed. 1927, p. 556-557.