Problemas

Quer o estudante, quer o professor de matemática deparam aqui e ali com problemas cujo enunciado nem sempre denuncia a sua natureza - do trivial ao profundo. Nem por isso esses problemas deixam de ocupar, às vezes com teimosia, o tempo de quem os formulou ou simplesmente encontrou, constituindo-se em geral como subproduto da faina matemática. Aqui se apresentam hoje alguns problemas do foro da análise matemática real. Naturalmente que a Gazeta de Matemática fica à espera de respostas dos leitores que serão publicadas após seleç̧ão, bem como de novos problemas...

1. Sejam $f, f_{n}(n=1,2, \ldots)$, funções reais de variável real; suponhamos que para todo $x \in \mathbf{R}$ e qualquer sucessão $x_{n} \xrightarrow[n \rightarrow \infty]{ } x$ se tem $f_{n}\left(x_{n}\right) \rightarrow$ $f(x)$. Será que f é necessariamente contínua?
2. Seja $f:[0,1] \rightarrow \mathbf{R}$ contínua. Prove que

$$
\lim _{n \rightarrow \infty}(n+1) \int_{0}^{1} x^{n} f(x) d x=f(1)
$$

3. Sendo $f: \mathbf{R} \rightarrow \mathbf{R}$ contínua tal que $f(x)=f(x+1)=f(x+\sqrt{2})$ para todo $x \in \mathbf{R}$, será que f tem de ser constante?
4. Dada a sucessão $\left(a_{n}\right)$ de números reais de termo geral $a_{n}>0$, tal que $\sum a_{n}$ converge, será sempre possível encontrar uma sucessão $\left(c_{n}\right)$ de termos positivos $\left(c_{n}>0\right)$, tal que $\lim c_{n}=+\infty$ e $\sum c_{n} a_{n}$ seja convergente?
5. Será que uma sucessão $\left(x_{n}\right)$ de números reais não negativos ($x_{n} \geq 0$) tal que $x_{n+1} \leq x_{n}+\frac{1}{n^{2}}$ para todo n, é necessariamente convergente?
6. Seja $f:[0,1] \rightarrow \mathbf{R}$ uma função real de variável real tal que:
i) Se $[a, b] \subset[0,1]$ então $f([a, b])$ contém o intervalo de extremos $f(a), f(b) ;$
ii) Para todo $c \in \mathbf{R}, f^{-1}(c)$ é fechado.

Será f necessariamente contínua?
(Problemas propostos por Jorge Nuno Oliveira e Silva)

