On symmetrical Fourier kernel I(')

by R. U. Verme
(Departmeat of Mathematics. Uuiversity of Cape Coast - Ghane)

Abstract. A generalised symmetrical Fourier kernel has been introduced. It has been tried to give a more general form of reciprocal transform with this Fourier kernel. Finally a formula for self-reciprocal functions associated with the H-function is being established.

1. Introduction. The functions $k(x)$ and $h(x)$ are said to form a pair of Fourier kernels if the following pair of reciprocal equations:

$$
\begin{equation*}
g(x)=\int_{0}^{\infty} k(x y) f(y) d y \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
f(x)=\int_{0}^{\infty} h(x y) g(y) d y, \tag{1.1}
\end{equation*}
$$

are simultaneously satisfied. As usual the kernels will be symmetrical if $k(x)=h(x)$ and if $k(x) \neq h(x)$ the kernels will be unsymmetrical. The functions studied by Kesarwani (1959), Fox (1961) and others as symmetrical Fourier kernels are the G-functions.

I shall try to introduce a generalised symmetrical Fourier kernel by taking the more general form of the H-function studied by Fox (1961). With this kernel, a new reciprocal transform has been defined. Then a formula for self-reciprocal functions associated with the H-function is given.

[^0]2. Employing the definition of the H-function, we consider the function:
\[

$$
\begin{align*}
& H_{2 p+2 q, 2 m+2 n}^{m+n, p+q}(x)= \tag{2.1}\\
&=(2 \pi i)^{-1} \int_{T} \prod_{1}^{m} \Gamma\left(c_{j}+\gamma_{j}(s-1 / 2)\right) \\
& \cdot \prod_{1}^{p} \Gamma\left(a_{j}-\alpha_{j}(s-1 / 2)\right) \cdot \\
& \cdot \prod_{1}^{n} \Gamma\left(d_{j}+\delta_{j}(s-1 / 2)\right) \cdot \\
& \cdot \prod_{1}^{q}\left(b_{j}-\beta_{j}(s-1 / 2)\right) \cdot \\
& \cdot\left\{\prod_{1}^{n} \Gamma\left(d_{j}-\delta_{j}(s-1 / 2)\right) \cdot\right. \\
& \cdot\left.\prod_{1}^{q} \Gamma\left(b_{j}+\beta_{j}(s-1 / 2)\right)\right\}^{-1} \cdot \\
& \cdot\left\{\prod_{1}^{m} \Gamma\left(c_{j}-\gamma_{j}(s-1 / 2)\right) \cdot\right. \\
& \cdot\left.\prod_{1}^{p} \Gamma\left(a_{j}+\alpha_{j}(s-1 / 2)\right)\right\}^{-1} \cdot x^{-t} d s,
\end{align*}
$$
\]

where the following simplifying assumptions are made:

$$
\begin{align*}
& \gamma_{j}>0, j=1, \cdots, m ; \tag{i}\\
& \alpha_{j}>0, j=1, \cdots, p ; \\
& \partial_{j}>0, j=1, \cdots, n ; \\
& \beta_{j}>0, j=1, \cdots, v .
\end{align*}
$$

(ii)
$D=2\left(\sum_{1}^{m} \gamma_{j}-\sum_{1}^{p} \alpha_{j}+\sum_{1}^{n} \delta_{j}-\sum_{1}^{q} \beta_{j}\right)>0$.
(iii) All the poles of the integrand of (2.1) are simple.
(iv) The contour T is a straight line parallel to the imaginary axis in the s plane and the poles of $\Gamma\left(c_{j}+\gamma_{j}(s-1 / 2)\right)$ and $\Gamma\left(d_{j}+\delta_{j}(s-1 / 2)\right)$ and lie to the left of T while those of $\Gamma\left(b_{j}-\beta_{j}(s-1 / 2)\right)$ and $\Gamma\left(a_{j}-\alpha_{j}(s-1 / 2)\right)$ lie on the right of T.

For the sake of brevity, I shall write (2.1) in the form

$$
\begin{equation*}
H_{1}(x)=(2 \pi i)^{-1} \int_{T} M_{1}(s) x^{-s} d s \tag{2.2}
\end{equation*}
$$

It can be easily shown that $M_{1}(s)$ is the Mellin transform of $H_{1}(x)$ and it satisfies the necessary and sufficient condition [9] that $H_{1}(x)$ may be a symmetrical Fourier kernel is that

$$
\begin{equation*}
M_{1}(s) M_{1}(1-s)=1 \tag{2.3}
\end{equation*}
$$

A number of Fourier kernels follow as particular cases by specializing the parameters in (2.1).

With the above Fourier kernel, the new reciprocal transform may be introduced as:

$$
\begin{equation*}
g(x)=\int_{0}^{\infty} H_{1}(x y) f(y) d y \tag{2.4}
\end{equation*}
$$

A systematic study of the above reciprocal transform can be made as in the case of Hankel transforms.

The Hankel transform introduced by Verma [7]:
(2.5) $\quad g(x)=$

$$
=\int_{0}^{\infty} G_{2,4}^{2,1}\left(x y \left\lvert\, \begin{array}{l}
k-m-1 / 2-\nu / 2 \\
-k+m+1 / 2+\nu / 2 \\
\nu / 2-\lambda-m, \nu / 2-\lambda+m, \\
-\nu / 2+\lambda+m \\
-\nu / 2+\lambda-m
\end{array}\right.\right) .
$$

is a special case of (2.4) for $n=0, v=0$, $m=2, p=1, x_{j}=1, j=1, \ldots, p ; \gamma_{j}=1$, $j=1, \cdots, m ; a_{1}=k-m-1 / 2-\nu / 2, a_{2}=$ $=-k+m+1+\nu / 2, \quad c_{1}=\nu / 2-\lambda-m$, $c_{2}=\nu / 2-\lambda+m, \quad c_{3}=-\nu / 2+\lambda+m$, $c_{4}=-\nu / 2+\lambda-m$ in (2.1).

The integral transform (2.5) reduces to a generalised Hankel transform due to Bhise [2] for $\lambda=-m$, which itself reduces to Hankel transform

$$
\begin{equation*}
g(x)=\int_{0}^{\infty}(x y)^{1 / 2} J_{p}(x y) f(y) d y \tag{2.6}
\end{equation*}
$$

3. Now we estimate the asymptotic behaviour of $M_{1}(s), s=\sigma+i t$, and t real, when $|t|$ is large. For large s the asymptotic expansion of the Gamma function is [8]:

$$
\begin{gather*}
\log \Gamma(s+a)=(s+a-1 / 2) \log s- \tag{3.1}\\
-s+1 / 2 \log (2 \pi)+0\left(s^{-1}\right)
\end{gather*}
$$

where $|\arg s|<\pi$. To find the behaviour of $M_{1}(s)$ for large $|t|$, we replace Gamma functions involving $-s$ into those containing $+s$ with the help of the relation
(3.2) $\Gamma(z) \Gamma(1-z)=\pi \operatorname{cosec} \pi z$.

Then using (3.1) and the simplifying assumptions made in (2.1), (i)…(iv), we get

$$
\begin{equation*}
M_{1}(s) x^{-s}= \tag{3.3}
\end{equation*}
$$

$$
|t|^{D(\sigma-1 / 2)} \exp \{i t(D \log |t|-\log x-B)\} \times
$$

$$
\times\left\{Q+0\left(|t|^{-1}\right)\right\}
$$

for large $|t|$, where B is a constant and Q is also a constant but Q may have one value for large positive t and anuther value for large negative t.

From (3.3) it follows that if $\sigma<1 / 2$, the integral (2.2) is uniformly convergent with respect to x. We may, therefore integrate through the integral sign of (2.2).

Let us take

$$
\begin{equation*}
H_{1}^{(1)}(x)=\int_{0}^{x} H_{1}(x) d x \tag{3.4}
\end{equation*}
$$

then

$$
\begin{gather*}
H_{1}^{(1)}(x)=(2 \pi i)^{-1} \tag{3.5}\\
\int_{T} M_{1}(s)(1-s)^{-1} x^{1-s} d s
\end{gather*}
$$

This has been proved to be valid only when $\sigma<1 / 2$, but for $\sigma=1 / 2$, the proof can be extended. On the line $\sigma=1 / 2$, $M_{1}(s) x^{-s}$ is bounded from (3.3) and therefore $M_{1}(s) /(1-s) \in L_{2}(1 / 2-i \infty, 1 / 2+i \infty)$.
4. If $f(x)=\int_{0}^{\infty} k(x y) f(y) d y$, then $f(x)$ is said to be a self-reciprocal function for kernel $k(x)$. All the symmetrical Fourier kernels can be associated with self-reciprocal functions and conversely.

Now we shall establish a formula for the self-reciprocal functions of $H_{1}(x)$. The following results will be required in theorem relating self-reciprocal functions. We shall write:

$$
\begin{equation*}
M_{1}(s)=N_{1}(s) / P_{1}(s) \tag{4.1}
\end{equation*}
$$

where

$$
\begin{align*}
N_{1}(s)= & \prod_{1}^{m} \Gamma\left(c_{j}+\gamma_{j}(s-1 / 2)\right) \tag{4.2}\\
& \cdot \prod_{1}^{p} \Gamma\left(a_{j}-\alpha_{j}(s-1 / 2)\right) \times
\end{align*}
$$

$$
\begin{aligned}
& \times \prod_{1}^{n} \Gamma\left(d_{j}+\delta_{j}(s-1 / 2)\right) . \\
& \cdot \prod_{1}^{\nu} \Gamma\left(b_{j}-\beta_{j}(s-1 / 2)\right)
\end{aligned}
$$

Here $M_{1}(s)$ is the coefficient of $x^{-\varepsilon}$ in the integral (2.1) and so

$$
\begin{equation*}
P_{1}(s)=N_{1}(1-s) \tag{4.3}
\end{equation*}
$$

Theorem. If
(i) $\gamma_{j}>0, j=1, \cdots, m ; \alpha_{j}>0, j=1, \cdots, p$; $\delta_{j}>0, j=1, \cdots, n ; \beta_{j}>0, j=1, \cdots, v$,

$$
\begin{align*}
\mathrm{D} & =2\left(\sum_{1}^{\mathrm{m}} \gamma_{j}-\sum_{1}^{\mathrm{p}} \alpha_{j}+\right. \tag{ii}\\
& \left.+\sum_{1}^{\mathrm{n}} \delta_{j}-\sum_{1}^{\mathrm{v}} \beta_{\mathrm{j}}\right)>0
\end{align*}
$$

(iii) $\mathrm{R}\left(\mathrm{a}_{\mathrm{j}}\right)>0, \mathrm{j}=1, \ldots, \mathrm{p}$;
$R\left(b_{j}\right)>0, j=1, \cdots, v ; R\left(c_{j}\right)>0, j=1, \cdots, m ;$ $R\left(d_{j}\right)>0, j=1, \cdots, n$;
(iv) $\mathrm{E}_{1}(1 / 2-\mathrm{s})$ is an even function of s ,
(v) $\mathrm{N}_{1}(\mathrm{~s}) \mathrm{E}_{1}(\mathrm{~s}) \in \mathrm{L}_{2}(1 / 2-\mathrm{i} \infty, 1 / 2+\mathrm{i} \infty)$,
(vi)
$f(x)=(2 \pi i)^{-1} \int_{1 / 2-i \infty}^{1 / 2+i \infty} N_{1}(s) E_{1}(s) x^{-s} d s$, then

$$
\begin{equation*}
\int_{0}^{x} f(x) d x=\int_{0}^{\infty} f(t) H_{1}^{(1)}(x t) t^{-1} d t \tag{4.4}
\end{equation*}
$$

It includes the Theorem 4 and Theorem 6 of Fox [3] as corollaries.

Proof. This theorem is proved by performing two applications of Parseval theorem, Theorem 72 [6, p. 95].

From (3.5), it follows that $M_{1}(s) /(1-s) e$ $\epsilon L_{2}(1 / 2-i \infty, 1 / 2+i \infty)$ and that $H_{1}^{(1)}(x) / x$
is its Mellin transform. Thus, using t as the Mellin transform variable, it follows that $H_{1}^{(1)}(x) / t$, añ $M_{1}(s) x^{1-s} /(1-s)$ are Mellin transform of each other. Then, on using (v) and Theorem 72 [6] one can apply the Parseval theorem and obtain

$$
\begin{equation*}
\int_{0}^{\infty} f(t) H_{1}^{(1)}(x t) t^{-1} d t= \tag{4.5}
\end{equation*}
$$

$$
=(2 \pi i)^{-1} \int_{1 / 2-i \infty}^{1 / 2+i \infty} M_{1}(s) x^{1-s}(1-s)^{-1} \times
$$

$$
\times N_{1}(1-s) E_{1}(1-s) d s
$$

(4.6)

$$
=(2 \pi i)^{-1} \int_{1 / 2-i \infty}^{1 / 2+i \infty} N_{1}(s) E_{1}(s) x^{1-s}(1-s)^{-1} d s
$$

using (4.1), (4.3) and condition (iv).
Again using Theorem 72 [6] and defining the function $F(t)$, we have

$$
\begin{equation*}
\int_{0}^{x} f(t) d t=\int_{0}^{\infty} f(t) F(t) d t \tag{4.7}
\end{equation*}
$$

$$
\begin{equation*}
=(2 \pi i)^{-1} \int_{1 / 2-i \infty}^{1 / 2+i \infty} N_{1}(s) E_{1}(s) x^{1-s}(1-s)^{-1} d s . \tag{4.8}
\end{equation*}
$$

By comparing (4.5) and (4.8), we get the required result.

The generalised H-function kernel can be utilised in the study of dual integral equations. Employing the technique [4] introduced by Fox, we can solve dual integral equations with the following H-function kernels:

$$
\begin{gathered}
\int_{0}^{\infty} H_{2 p+2 v+k, 2 m+2 n+k}^{m+n, p+v+k}(x u) f(u) d u=\varphi(x), \\
(0<x<1),
\end{gathered}
$$

$\int_{0}^{\infty} H_{2 p+2 v+k^{\prime}, 2 m+2 n+k^{\prime}}^{m+n+k^{\prime}, p+v}(x u) f(u) d u=\psi(x)$,

$$
(x>1)
$$

where $\varphi(x)$ and $\psi(x)$ are given and $f(x)$ is the unknown function to be found. By using fractional integration these equations can be roduced to two others with common kernel $H_{2 p+2 q, 2 m+2 n}^{m+n, p+v}(x)$, which is the symmetrical Fourier kernel (2.1).

Then $f(x)$ can be found by the known Fourier inversion formula.

REFERENCES

[1] Ebdėlyr, A., Higher Transcendental Functions, Vol. I, Batemau Manuscript Project, New York, 1953.
[2] Bhise, V. M., Operators of fractional integration and a generalized Hankel transform, Collect. Math, 16 (1964), p. 201.
[3] Fox, C, G and N-functions as symmelrical Fourier kernels, Trans. Amer. Math. Soc,, 98 (1961), p. 395-429.
[4] Saxens , R. K., A formal solution of certain dual integral equations involving H-functions, Proc. Camb. Philos. Soc., 63 (1967), p. 171-178.
[5] Kesarmani, R. N., A Fourier kernal, Math. Z., 70 (1959), p. 297-299.
[6] Titchanash, E. C., Introduction to the Theory of Fourier of Fourier iutegrals, Oxford, University Press, 1937.
[7] Verma, R. U., On an integral transform and self--reciprocal functions involving two variables, Mat. Vesnik. (Belgrade), 6 (21), (1969), p. 269-275.
[8] Whithaker, E. T., and Watson, G. N., A Course of Modern Analysis, Cambridge, University Prese, 1915.
[9] Watson, G. N., General Transform, Proc. Lond. Math. Soc. Ser. II, 35 (1933), p. 156-199.

[^0]: (${ }^{1}$) Presented at the 8th Biennial Conference, Ghana Science Association at University Of Science And Technology, Kumasi (1973).

