Cardinality of a set of topologies

by O. T. Alas

Instituto de Matemática e Estatistica, Universidade de Săo Paulo, Brasil

Let E be an infinite set and K be the set of all topologies τ on E, such that (E, τ) is a $H_{\text {ausdorff }}$ compact connected and locally connected space. Question: Which is the cardinal number of the set K ? The purpose of this note is to answer this question.

1. For any set $Z,|Z|$ denotes the cardinal number of Z.

Suppose that K is a nonempty set and let τ be a fixed element of K. Since (E, τ) is a normal connected space, the cardinality of the set E is greater than or equal to $2^{\aleph_{0}}$.

Now, we fix an element $b \in E$. Let us denote by τ^{\prime} the product topology on $[0,1] \times E$, where E is topologized with τ and $[0,1]$ with the usual topology. Put $G=[0,1] \times E-$ $-\{(0, b)\} . G$ as a subspace of $[0,1] \times E$ is a Hausdorff locally compact connected and locally connected space.

For each partition $\left\{X_{1}, X_{2}\right\}$ of $E-\{b\}$ (thus $E-\{b\}=X_{1} \cup X_{2}$ and $X_{1} \cap X_{2}=\phi$), with $\left|X_{1}\right|=\left|X_{2}\right|=|E|$, we fix two bijective functions $f_{1}: G \rightarrow X_{1}$ and $f_{2}: G \rightarrow X_{2}$. (The set of all partitions of $E-\{b\}$ under the above conditions has cardinality equal to $2^{|E|}$ by virtue of [1] and because $|E \times E|=|E|$). Putting $P=\left\{X_{1}, X_{2}\right\}$, let us denote by τ_{P} te topology on E such that the set

$$
\begin{gathered}
\left\{f_{1}(Z \cap G) \cup f_{2}(Z \cap G) \cup\{b\} \mid(0, b) \in Z \in \tau^{\prime}\right\} \cup \\
\cup\left\{f_{1}(Z \cap G) \mid Z \in \tau^{\prime}\right\} \cup\left\{f_{2}(Z \cap G) \mid Z \in \tau^{\prime}\right\}
\end{gathered}
$$

is an open basis of the topology τ_{P}.
Proposition 1. ($\mathrm{E}, \tau_{\mathrm{p}}$) is a Hausdorff compact connected and locally connected space.

Proof. It is obvious that $\left(E, \tau_{P}\right)$ is a Hausdorff space. On the other hand, X_{1}
and X_{2} are open-connected subsets and it follows immediately that (E, τ_{P}) is connected. The subspaces $X_{1} \cup\{b\}$ and $X_{2} \cup\{b\}$ are compact; thus (E, τ_{P}) is a compact space.

Finally, it is sufficient to prove that b has a fundamental system of connected neighborhoods. Let W be a connected neighborhood of b in the topological space (E, τ) and put $Z=[0,1 / n[\times W$, where $n \geq 1$ is a natural number. The set Z is a connected neighborhood of $(0, b)$ in the product topological space $\left([0,1] \times E, \tau^{\prime}\right)$. Therefore $f_{1}(Z \cap G) \cup$ $\cup f_{2}(Z \cap G) \cup\{b\}$ is a connected neighborhood of b in the topological space $\left(E, \tau_{P}\right)$. So it follows easily that (E, τ_{P}) is locally connected.
2. Let $Q=\left\{Y_{1}, Y_{2}\right\}$ be another partition of $E-\{b\}$, with $\left|Y_{1}\right|=\left|Y_{2}\right|=|E|$, and let τ_{Q} be the correspondent topology on E. We shall prove that if $P \neq Q$, then $\tau_{P} \neq \tau_{Q}$.

On the contrary, suppose that $P \neq Q$ and $\tau_{P}=\tau_{Q}$. The sets X_{1}, X_{2}, Y_{1} and Y_{2} are open connected in $\left(E, \tau_{P}\right)$ and $X_{1} \cup X_{2}=$ $=Y_{1} \cup Y_{2}$. Thus $X_{1}=Y_{1}$ and $X_{2}=Y_{2}$ or $X_{1}=Y_{2}$ and $Y_{1}=X_{2}$. It follows that $P=Q$, which is impossible.

Proposition 2. The cardinality of the set K is equal to 0 or to $2^{|\mathrm{E}|}$.

Proof. Since for any $\sigma \in K,(E, \sigma)$ is Hausdorff compact, then $|K|$ is less than or equal to $2^{|E|}$. So the proof is completed.

REFERENCES

[1] E. Farab, Number of equivalence relations on a set. Ciência e Cultura 18 (1966), n. ${ }^{\circ}$ 4, p. 437.

