Cardinality of a set of topologies

by O. T. Alas

Instituto de Matemática e Estatística, Universidade de São Paulo, Brasil

Let E be an infinite set and K be the set of all topologies τ on E, such that (E, τ) is a Hausdorff compact connected and locally connected space. Question: Which is the cardinal number of the set K? The purpose of this note is to answer this question.

1. For any set Z, $|Z|$ denotes the cardinal number of Z.

Suppose that K is a nonempty set and let τ be a fixed element of K. Since (E, τ) is a normal connected space, the cardinality of the set E is greater than or equal to \aleph_0.

Now, we fix an element $b \in E$. Let us denote by τ' the product topology on $[0,1] \times E$, where E is topologized with τ and $[0,1]$ with the usual topology. Put $G = [0,1] \times E - \{(0, b)\}$. G as a subspace of $[0,1] \times E$ is a Hausdorff locally compact connected and locally connected space.

For each partition $|X_1, X_2|$ of $E - \{b\}$ (thus $E - \{b\} = X_1 \cup X_2$ and $X_1 \cap X_2 = \emptyset$), with $|X_1| = |X_2| = |E|$, we fix two bijective functions $f_1: G \rightarrow X_1$ and $f_2: G \rightarrow X_2$. (The set of all partitions of $E - \{b\}$ under the above conditions has cardinality equal to $2^{|E|}$ by virtue of [1] and because $|E \times E| = |E|$.)

Putting $P = |X_1, X_2|$, let us denote by τ_P the topology on E such that the set $|f_1(Z \cap G) \cup f_2(Z \cap G) \cup \{b\}| \cup \{(0, b) \in Z \in \tau'\} \cup \cup f_1(Z \cap G) \forall Z \in \tau' \cup f_2(Z \cap G) \forall Z \in \tau'$ is an open basis of the topology τ_P.

Proposition 1. (E, τ_P) is a Hausdorff compact connected and locally connected space.

Proof. It is obvious that (E, τ_P) is a Hausdorff space. On the other hand, X_1 and X_2 are open-connected subsets and it follows immediately that (E, τ_P) is connected. The subspaces $X_1 \cup \{b\}$ and $X_2 \cup \{b\}$ are compact; thus (E, τ_P) is a compact space.

Finally, it is sufficient to prove that b has a fundamental system of connected neighborhoods. Let W be a connected neighborhood of b in the topological space (E, τ) and put $Z = [0,1] \times W$, where $n \geq 1$ is a natural number. The set Z is a connected neighborhood of b in the product topological space $([0,1] \times E, \tau')$. Therefore $f_1(Z \cap G) \cup f_2(Z \cap G) \cup \{b\}$ is a connected neighborhood of b in the topological space (E, τ_P). So it follows easily that (E, τ_P) is locally connected.

2. Let $Q = |Y_1, Y_2|$ be another partition of $E - \{b\}$, with $|Y_1| = |Y_2| = |E|$, and let τ_Q be the correspondent topology on E.

We shall prove that if $P \neq Q$, then $\tau_P \neq \tau_Q$.

On the contrary, suppose that $P = Q$ and $\tau_P = \tau_Q$. The sets X_1, X_2, Y_1 and Y_2 are open-connected in (E, τ_P) and $X_1 \cup X_2 = Y_1 \cup Y_2$. Thus $X_1 = Y_1$ and $X_2 = Y_2$ or $X_1 = Y_2$ and $Y_1 = X_2$. It follows that $P = Q$, which is impossible.

Proposition 2. The cardinality of the set K is equal to 0 or to $2^{|E|}$.

Proof. Since for any $\sigma \in K, (E, \sigma)$ is Hausdorff compact, then $|K|$ is less than or equal to $2^{|E|}$. So the proof is completed.

References