A note on the normal endomorphisms of a group

by José Morgado

Instituto de Matemática, Universidade Federal de Pernambuco, Brasil

1. It is well known that in an abelian group, for every integer n, the mapping $\overline{n}: x \mapsto x^n$ is an endomorphism.

In [1], E. Schenkman and L. I. Wade have considered the converse question whether a group is abelian when \overline{n} is an endomorphism. One knows that, if there are three consecutive integers i for which the mappings $x \mapsto x^i$ are endomorphisms, then the group is abelian. However, from the fact that the mappings $x \mapsto x^i$ and $x \mapsto x^{i+1}$ are endomorphisms for some integer i, one cannot conclude that the group be abelian ([2], Exercises 4 and 5, p. 31).

Let G be a group and let $G \{n\}$ be the subgroup of G generated by all elements whose orders divide n. In [1], it is stated that

1) if \overline{n} is an endomorphism, then $G/G \{n^2-n\}$ is abelian;

2) if \overline{n} is an automorphism, then $G/G \{n-1\}$ is abelian;

and, consequently,

3) if G has no elements whose orders divide n^2-n or if G has no elements whose orders divide $n-1$ when \overline{n} is an automorphism, then G is abelian.

The purpose of this note is to improve the results obtained by Schenkman and Wade.

2. Let us recall that an endomorphism α of a group G is said to be a normal endomorphism of G, if α commutes with every inner automorphism of G, i.e., if one has

$$\alpha(xyx^{-1}) = x \alpha(y) x^{-1}$$

for all x, y in G.

Since $(xyx^{-1})^n = x y^n x^{-1}$ for all x, y in G, one sees that, if \overline{n} is an endomorphism of G, then it is necessarily a normal endomorphism.

The identity operator of G will be denoted by ε and by $\varepsilon - \alpha$ one means, as it is natural, the operator of G defined by

$$(\varepsilon - \alpha)(x) = x \alpha(x^{-1}).$$

In general, the operator $\varepsilon - \alpha$ is not an endomorphism, as one concludes from the following

Theorem 1. Let α be an endomorphism of the group G. Then $\varepsilon - \alpha$ is an endomorphism, if and only if α is normal. Moreover, if α is a normal endomorphism, then the endomorphism $\varepsilon - \alpha$ is normal.

Proof. Indeed, one has

$$(\varepsilon - \alpha)(xy) = x y \alpha(y^{-1}x^{-1}) = x y \alpha(y^{-1}) \alpha(x^{-1})$$

for all x, y in G.

On the other hand,

$$(\varepsilon - \alpha)(x) \cdot (\varepsilon - \alpha)(y) = x \alpha(x^{-1}) \cdot y \alpha(y^{-1}).$$

Consequently, $\varepsilon - \alpha$ is an endomorphism, if and only if

$$y \alpha(y^{-1}) \alpha(x^{-1}) = \alpha(x^{-1}) y \alpha(y^{-1}),$$
that is to say, if and only if
\[\alpha(y^{-1})\alpha(x^{-1})\alpha(y) = y^{-1}\alpha(x^{-1})y, \]
for all \(x, y \) in \(G \).

This means that \(\varepsilon - \alpha \) is an endomorphism, if and only if one has
\[\alpha(y^{-1}x^{-1}y) = y^{-1}\alpha(x^{-1})y \]
for all \(x, y \) in \(G \),

which proves the first part of the theorem.

Moreover, one has clearly, for all \(x, y \) in \(G \),
\[y(\varepsilon - \alpha)(x)y^{-1} = yx\alpha(x^{-1})y^{-1} = yx y^{-1} \alpha(x^{-1})y^{-1} = yx y^{-1}\alpha(y x^{-1}y^{-1}) = (\varepsilon - \alpha)(yx y^{-1}), \]
proving that \(\varepsilon - \alpha \) is normal.

Theorem 2. If \(\alpha \) is a normal endomorphism of the group \(G \), then \(\alpha - \alpha^2 \) is a normal endomorphism of \(G \) and the quotient group \(G / \text{Ker}(\alpha - \alpha^2) \) is abelian.

Proof. By theorem 1, the operator \(\varepsilon - \alpha \) is a normal endomorphism.

It is immediate that, if \(\alpha \) and \(\beta \) are normal endomorphisms, then the composite endomorphism \(\alpha \circ \beta \) is also normal.

Since
\[\alpha - \alpha^2 = \alpha \circ (\varepsilon - \alpha), \]
one sees that \(\alpha - \alpha^2 \) is a normal endomorphism.

In order to show that the quotient group \(G / \text{Ker}(\alpha - \alpha^2) \) is an abelian group, it is sufficient to show that all commutators of \(G \) are in the kernel of the endomorphism \(\alpha - \alpha^2 \), that is to say, for all \(x, y \) in \(G \),
\[(\alpha - \alpha^2)(xy x^{-1}y^{-1}) = e, \]
where \(e \) denotes the neutral element of \(G \).

Or, by the normality of \(\alpha \), one has obviously
\[\alpha(xy x^{-1}y^{-1}) = \alpha(x)\alpha(y)\alpha(x^{-1})\alpha(y^{-1}) = \alpha(x)\alpha(\alpha(y)x^{-1}\alpha(y^{-1})) = \alpha(x)\alpha^2(y)\alpha(x^{-1})\alpha^2(y^{-1}) = \alpha(x)\alpha^2(y)\alpha^2(x^{-1})\alpha^2(y^{-1}) = \alpha^2(x)\alpha^2(y)\alpha^2(x^{-1})\alpha^2(y^{-1}) = \alpha^2(xy x^{-1}y^{-1}). \]

From this it follows
\[\alpha(xy x^{-1}y^{-1})\alpha^2((xy x^{-1}y^{-1})^{-1}) = e \]
and, consequently,
\[(\alpha - \alpha^2)(xy x^{-1}y^{-1}) = e, \]
as it was to be proved.

Corollary 1. If \(\alpha \) is an injective normal endomorphism of the group \(G \), then the quotient group \(G / \text{Ker}(\varepsilon - \alpha) \) is abelian.

In fact, from
\[\alpha(xy x^{-1}y^{-1}) = \alpha^2(xy x^{-1}y^{-1}), \]
it results, since \(\alpha \) is injective,
\[xy x^{-1}y^{-1} = \alpha(xy x^{-1}y^{-1}) \]
and hence
\[(\varepsilon - \alpha)(xy x^{-1}y^{-1}) = e \]
for all \(x, y \) in \(G \), proving that \(G / \text{Ker}(\varepsilon - \alpha) \) is abelian.

Corollary 2. If the mapping \(\bar{n} : x \mapsto x^n \) is an endomorphism of the group \(G \), then the quotient group \(G / G | \text{n}^2 - n| \) is abelian. If, moreover, the endomorphism \(\bar{n} \) is injective, then \(G / G | n - 1| \) is abelian.

In fact, \(\bar{n} \) is normal and one has clearly
\[G | n^2 - n| = \text{Ker}(\bar{n} - \bar{n}^2) \]
and, if \(\bar{n} \) is injective, then
\[G | n - 1| = \text{Ker}(1 - \bar{n}), \]
where \(1 \) denotes the identity endomorphism.
3. Now, let us suppose that the endomorphism \(\alpha \) is such that
\[x \alpha(x^{-1}) \in Z \]
for every \(x \in G \),
where \(Z \) denotes the center of \(G \).

It is easy to see that \(\varepsilon - \alpha \) is normal.

Indeed, since \(\alpha(x^{-1}) = x^{-1}z \) for some \(z \in Z \),
one has
\[\alpha(x y^{-1}) = \alpha(x) \alpha(y) \alpha(x^{-1}) = x^{-1} x \alpha(y) x^{-1} z = x \alpha(y) x^{-1} \]
for all \(x, y \) in \(G \), proving that \(\alpha \) is normal.

Then, by Theorem 1, one concludes that \(\varepsilon - \alpha \) is a normal endomorphism of \(G \).

We are going to see that the quotient group \(G / \text{Ker}(\varepsilon - \alpha) \) is abelian.

In fact, since
\[(\varepsilon - \alpha)(x y^{-1} y^{-1}) = x y x^{-1} y^{-1} \alpha(y) x y x^{-1} x^{-1} = x y x^{-1} y^{-1} \alpha(y) \alpha(x) \alpha(y^{-1}) \alpha(x^{-1}) = x y x^{-1} x \alpha(x) y^{-1} \alpha(y) \alpha(y^{-1}) \alpha(x^{-1}) = x y x^{-1} x \alpha(x) y^{-1} \alpha(x^{-1}) = x y y^{-1} x^{-1} \alpha(x) \alpha(x^{-1}) = e \]
for all \(x, y \) in \(G \), one sees that the kernel of \(\varepsilon - \alpha \) contains the subgroup generated by the commutators and, therefore, the quotient group \(G / \text{Ker}(\varepsilon - \alpha) \) is abelian.

Conversely, let us suppose that \(\varepsilon - \alpha \) is a normal endomorphism and \(G / \text{Ker}(\varepsilon - \alpha) \) is abelian.

Then, one has
\[x y x^{-1} y^{-1} \alpha(y) \alpha(x) \alpha(y^{-1}) \alpha(x^{-1}) = e \]
for all \(x, y \) in \(G \).

From this it follows
\[x y x^{-1} y^{-1} \alpha(y) = \alpha(x) \alpha(y) \alpha(x^{-1}) = \alpha(x y x^{-1}) = x \alpha(y) x^{-1} \]
in view of the fact that \(\alpha \) is a normal endomorphism, by Theorem 1 and \(\alpha = \varepsilon - (\varepsilon - \alpha) \).

Hence
\[y x^{-1} y^{-1} \alpha(y) = \alpha(y) x^{-1} \]

Consequently,
\[x^{-1} y^{-1} \alpha(y) = y^{-1} \alpha(y) x^{-1} \]
for all \(x, y \) in \(G \).

This means that \(y^{-1} \alpha(y) \in Z \) for every \(y \in G \).

In short, the following holds:

Theorem 3. If \(\alpha \) is an endomorphism of the group \(G \) such that \(x \alpha(x^{-1}) \) is in the center of \(G \) for every \(x \in G \), then \(\varepsilon - \alpha \) is a normal endomorphism and \(G / \text{Ker}(\varepsilon - \alpha) \) is abelian; conversely, if \(\varepsilon - \alpha \) is a normal endomorphism and \(G / \text{Ker}(\varepsilon - \alpha) \) is abelian, then \(\alpha \) is an endomorphism such that \(x \alpha(x^{-1}) \) is in the center of \(G \) for every \(x \in G \).

In particular, one has the following

Corollary. If \(\alpha \) is a central endomorphism of the group \(G \), i.e., if \(\alpha(x) \in Z \) for every \(x \in G \), then the quotient group \(G / \text{Ker}(\alpha) \) is abelian.

Indeed, it is immediate that \(\alpha \) is a normal endomorphism and so \(\varepsilon - \alpha \) is also a normal endomorphism.

One has, for every \(x \in G \),
\[\alpha(x) = x x^{-1} \alpha(x) = x (\varepsilon - \alpha)(x^{-1}) \in Z \]
and the conclusion follows immediately from Theorem 3.

BIBLIOGRAPHY

