ANTOLOGIA

Natural isomorphisms in group theory (")

by Samuel Eilenberg and Saunders MacLane
Departments of Mathematics, University of Michigan and Harvard University

Communicated October 26, 1942

1. Introduction. - Frequently in modern mathematics there occur phenomena of «naturality": a «natural» isomorphism between two groups or between two complexes, a «natural» homeomorphism of two spaces and the like. We here propose a precise definition of the «naturality» of such correspondences, as a basis for an appropriate general theory. In this preliminary report we restrict ourselves to the natural isomorphisms of group theory; with this limitation we can present the basic concepts of our theory without developing the axiomatic approach necessary for a general treatment applicable to various branches of mathematics.

Properties of character groups (see the definitions in § 5 below)(**) may serve to illustrate the ideas involved. Thus, it is often asserted tbat the character group of a finite group G is isomorphic to the group itself, but not in a anatural way. Specifically, if G is cyclic of prime order p, there is for each generator of G an isomorphism of G to its character group, so that the proof furnishes $p-1$ such isomorphisms, no one of which is in any way distinguished from its fellows. However, the proof that that the character group of the character group of G

[^0]is isomorphic to G itself is considered anaturaln, because it furnishes for each G a unique isomorphism, not dependent on any choice of generators.

To give these statements a clear mathematical meaning, we shall regard the character group $C h(G)$ of G as a function of a variable group G, together with a prescription which assigns to any homomorphism γ of G into a second group G^{\prime}.

$$
\gamma: G \rightarrow G^{\prime},
$$

the induced homomorphism (see (5) below)

$$
\operatorname{Ch}(\gamma): \operatorname{Ch}\left(G^{\prime}\right) \rightarrow \operatorname{Ch}(G) .
$$

The functions $C h(G)$ and $C h(\gamma)$ jointly form what we shall call a «functor»; in this case, a «contravariant» one, because the mapping $C h(\gamma)$ works in a direction opposite to that of γ. A natural isomorphism between two functions of groups will be an isomorphism which commutes properly with the induced mappings of the functors.

With our description of a natural isomorphism, practically all the general isomorphisms obtained in group theory and its applications (homology theory, Galois theory, etc.) can be shown to be enaturaln. This results in added clarity in such situations. Furthermore, there are definite proofs where the naturality of an isomorphism is needed,
especially when a passage to the limit is involved. In fact, our condition ($E 2$) below appears in the definition of the isomorphism of two direct or two inverse systems of groups (${ }^{1}$).
2. Functors. - The definition of a functor will be given for the typical case of a functor T which depends on two groups as arguments, and is covariant in the first argument and contravariant in the second. Such a functor is determined by two functions. The group function determines for each pair of topological groups G and H (contained in a given legitimate set of groups) another group $T(G, H)$. The mapping functions determines for each pair of homomorphisms ${ }^{(2}$) $\gamma: G_{1} \rightarrow G_{2}$ and $n: H_{1} \rightarrow H_{2}$ a homomorphism $T(\gamma, n)$, such that

$$
\begin{equation*}
T(\gamma, n):\left(G_{1}, H_{2}\right) \rightarrow T\left(G_{2}, H_{1}\right) . \tag{1}
\end{equation*}
$$

We require that $T(\gamma, n)$ be the identity isomorphism whenever γ and n are identities, and that, whenever the products $\gamma_{2} \gamma_{1}$ and $n_{2} n_{1}$ are defined,
(2) $T\left(\gamma_{2} \gamma_{1}, n_{2} n_{1}\right)=T\left(\gamma_{2}, n_{1}\right) T\left(\gamma_{1}, n_{2}\right)$.

Some functors will be defined only for special types of groups (e. g., for abelian groups) or for special types of homomorphisms (e. g., for homomorphisms ©ontop).

If γ and n are both isomorphisms ${ }^{(3)}$, it follows from these conditions that $T(\gamma, n)$ is

[^1]also an isomorphism. Consequently, if the groups G_{1} and G_{2} and the groups H_{1} and H_{2} are isomorphic, the functor T gives rise to isomorphic groups $T\left(G_{1}, H_{1}\right)$ and $T\left(G_{2}, H_{2}\right)$.
3. Examples. - The direct product $G \times H$ of two groups may be reguarded as the group function of a functor. The corresponding mapping function specifies, for each pair of homomorphisms $\gamma: G_{1} \rightarrow G_{2}$ and $n: H_{1} \rightarrow H_{2}$, an induced homomorphism $\gamma \times n$, defined for every element (g_{1}, h_{1}) in $G_{1} \times H_{1}$ as
$$
[\gamma \times n]\left(g_{1}, h_{1}\right)=\left(\gamma g_{1}, n h_{1}\right) .
$$

Then

$$
\begin{equation*}
\gamma \times n: G_{1} \times H_{1} \rightarrow G_{2} \times H_{2}, \tag{3}
\end{equation*}
$$

and, whenever $\gamma_{2} \gamma_{1}$ and $n_{2} n_{1}$ are defined, one has

$$
\begin{equation*}
\left(\gamma_{2} \gamma_{1}\right) \times\left(n_{2} n_{1}\right)=\left(\gamma_{2} \times n_{2}\right)\left(\gamma_{1} \times n_{1}\right), \tag{4}
\end{equation*}
$$

Except for the absence of contravariance, these conditions are parallel to (1) and (2), hence $G \times H, \gamma \times n$ define a functor, covariant in both G and H.

Whitney's tensor product (${ }^{4}$)(*) $G \circ H$ of two discrete groups (${ }^{5}$) G and H is the group function of a functor. The elements of this group are all finite sums $\Sigma g_{1} \circ h_{1}$ of formal products $g_{1} \circ h_{1}$; the group operation is the obvious addition, and the relations are $g \circ\left(h+h^{\prime}\right)=g \circ h+g \circ h^{\prime},\left(g+g^{\prime}\right) \circ h=$ $g \circ h+g^{\prime} \circ h$. Given two homomorphisms $\gamma: G_{1} \rightarrow G_{2}$ and $n: H_{1} \rightarrow H_{2}$, there is an induced homomorphism $\gamma \circ n$ of $G_{1} \circ H_{1}$ into
${ }^{(4)}$ Whitney, H., aTensor Products of Abelian Groups», Duke Math. Jour., 4, 495-528 (1938).
(*) A notação usual é $G \otimes H$.
${ }^{(5)}$ Here and subsequently the group operation in G and in H is written as addition, whether or not the groups are abelian.
$G_{2} \circ H_{2}$, defined for any generator $g_{1} \circ h_{1}$ of $G_{1} \circ H_{1}$ as

$$
[\gamma \circ n]\left(g_{1} \circ h_{1}\right)=\left(\gamma g_{1}\right) \circ\left(n h_{1}\right) \in G_{2} \circ H_{2} .
$$

Formulae (3) and (4), with the cross replaced by the circle, again hold, so that $G \circ H, \gamma \circ n$ determine a functor of discrete groups, covariant in both arguments.

In a similar fashion, the free product of two groups leads to a functor.

An important functor is given by the group of all homomorphisms φ of a fixed locally compact topological abelian group G into another topological abelian group H. The sum of two such homomorphisms φ_{1} and φ_{2} is defined for each $g \in G$ by setting $\left(\varphi_{1}+\varphi_{2}\right)(g)=\varphi_{1}(g)+\varphi_{2}(g)$. Under this operation, all $\varphi: G \rightarrow H$ constitute a group $\operatorname{Hom}(G, H)$: it carries an appropriate topology, the description of which we omit. For given $\gamma: G_{1} \rightarrow G_{2}$ and $n: H_{1} \rightarrow H_{2}$ and for each $\varphi \in \operatorname{Hom}\left(G_{2}, H_{1}\right)$ we have

$$
G_{1} \xrightarrow{\gamma} G_{2} \stackrel{\varphi}{\rightarrow} H_{1} \xrightarrow{n} H_{2} .
$$

Consequently we define $\operatorname{Hom}(\gamma, n)(\varphi)=n \varphi \gamma$, and verify that
$\operatorname{Hom}(\gamma, n): \operatorname{Hom}\left(G_{2}, H_{1}\right) \rightarrow \operatorname{Hom}\left(G_{1}, H_{2}\right)$,
$\operatorname{Hom}\left(\gamma_{2} \gamma_{1}, n_{2} n_{1}\right)=\operatorname{Hom}\left(\gamma_{1}, n_{2}\right) \operatorname{Hom}\left(\gamma_{2}, n_{1}\right)$.
Clearly when γ and n are identity mappings of G and H the induced mapping $\operatorname{Hom}(\gamma, n)$ is the identity mapping of $\operatorname{Hom}(G, H)$ on itself. Hence the functions $\operatorname{Hom}(G, H)$ and Hom (γ, n) determine for abelian groups a functor Hom, covariant in H and contravariant in G.

The special case when H is the group P of reals modulo 1 furnishes the character group,
$C h(G)=\operatorname{Hom}(G, P), \quad C h(\gamma)=\operatorname{Hom}(\gamma, e)$
where e is the identity mapping of P on itself. Therefore the character group is a contravariant functor, defined for abelian groups. Explicitly, if we express the result $\chi(g)$ of applying the character χ to the element $g \in G$ as the value (a real number modulo 1) of the bilinear form (g, χ), the definition of $C h(\gamma)$ can be written as

$$
\begin{equation*}
\left(g, C h(\gamma) \chi^{\prime}\right)=\left(\gamma g, \chi^{\prime}\right), g \in G, \chi^{\prime} \in C h\left(G^{\prime}\right) \tag{5}
\end{equation*}
$$

4. Equivalence of Functors. - Let T and S be two functors which are, say, both covariant in the variable G and contravariant in H. Suppose that for each pair of groups G and H we are given a homomorphism

$$
\tau(G, H): T(G, H) \rightarrow S(G, H) .
$$

We say that τ establishes a natural equivalence of the functor T to the fanctor S and that T is naturally equivalent to S (in symbols, $\tau: T \leftrightarrow S$) whenever
(E 1) Each $\tau(G, H)$ is a bicontinuous isomorphism of $T(G, H)$ onto $S(G, H) ;$
(E2) For each $\gamma: G_{1} \rightarrow G_{2}$ and $n: H_{1} \rightarrow H_{2}$, $\tau\left(G_{2}, H_{1}\right) T(\gamma, \eta)=S(\gamma, n) \tau\left(G_{1}, H_{2}\right)$.

The first requirement insures the term-by--term isomorphism of the two group functions $T(G, H)$ and $S(G, H)$, while the second requirement is precisely the «naturality» condition. It can be shown that the condition $(E 2)$ is implied by two special cases; the case when n is an identity, and the case when γ is an identity.

This relation of natural equivalence between functors is reflexive, symmetric and transitive. In many cases we dispense with condition (E 1), and obtain a more general concept of a atransformation» of a functor T into a functor S.
5. Examples of Natural Equivalence. The well known isomorphism

$$
\begin{equation*}
G \cong C h(C h(G)) \tag{6}
\end{equation*}
$$

for locally compact abelian groups, can be regarded as an equivalence of functors, and is in this sense natural. The right-hand side of (6) suggests the covariant functor, $C h^{2}$, defined by iteration of the functor $C h$, as

$$
C h^{2}(G)=\operatorname{Ch}(C h(G)), \quad C h^{2}(\gamma)=C h(C h(\gamma)) .
$$

The left-hand side of (6) suggests the identity functor, 1 ,

$$
I(G)=G, \quad I(\gamma)=\gamma .
$$

The bilinear form $(g, \chi)=\chi(g)$ determines to each character $\chi \in C h(G)$ and each $g \in G$ a real number modulo 1 ; similarly the form $(\chi, h)=h(\chi)$ is defined for each $h \in C h^{2}(G)$. The form (g, χ), regarded as a function of χ for fixed g, is a character h in $C h^{2}(G)$ which we call $[\tau(G)] g$. Explicitly, this definition of τ reads

$$
(\chi, \tau(G) g)=(g, \chi), \quad g \in G, \quad \chi \in C h(G) .
$$

The validity of condition ($E 1$) for $\tau(G)$ is the basic theorem of character theory. The condition ($E 2$) asserts that in the diagram

the two paths leading from G to $C h^{2}\left(G^{\prime}\right)$ have the same effect, or that, for each $g \in G$, both elements $\tau\left(G^{\prime}\right) \gamma g$ and $C h^{2}(\gamma) \tau(G) g$ are identical as elements of $C h^{2}\left(G^{\prime}\right)$. This
means that, for each $\chi^{\prime} \in C^{\prime}\left(G^{\prime}\right)$, one should have

$$
\left(\chi^{\prime}, \tau\left(G^{\prime}\right) \gamma g\right)=\left(\chi^{\prime}, C \hbar^{2}(\gamma) \tau(G) g\right) .
$$

By the definition of τ, the expression on the left is simply ($\gamma g, \chi^{\prime}$). By successive application to the expression on the right of the definitions of Ch, τ and Ch , we obtain

$$
\begin{gathered}
\left(\chi^{\prime}, C h^{2}(\gamma) \tau(G) g\right)=\left(C h(\gamma) \chi^{\prime}, \tau(G) g\right)= \\
=\left(g, C h(\gamma) \chi^{\prime}\right)=\left(\gamma g, \chi^{\prime}\right) .
\end{gathered}
$$

The identity of these results shows that we do have a natural equivalence

$$
\tau(G): G \leftrightarrow C h^{2}(G) .
$$

When G is finite, the isomorphism $G \rightarrow C h(G)$ cannot be «natural» according to our definitions, for the simple reason that the functor I on the left is covariant, while the functor Ch on the right is contravariant.

As other examples of equivalences between functors, we may cite the usual isomorphisms which give the associative and commutative laws for the direct product, the tensor product and the free product. Various distributive laws, such as

$$
\begin{gathered}
\left(G_{1} \times G_{2}\right) \circ H \cong\left(G_{1} \circ H\right) \times\left(G_{2} \circ H\right), \\
\operatorname{Hom}\left(G_{1} \times G_{2}, H\right) \cong \operatorname{Hom}\left(G_{1}, H\right) \times \\
\times \operatorname{Hom}\left(G_{2}, H\right),
\end{gathered}
$$

when established with the obvious isomorphisms, are in fact equivalences between fnnctors.

A less obvious relation between the tensor product and the functor «Hom» is (${ }^{1}$)
${ }^{(1)}$ This isomorphism was established by the authors; cf. Ann. Math., 44 (1943).
(7) $\operatorname{Hom}(G, \operatorname{Hom}(H, K)) \cong \operatorname{Hom}(G \circ H, K)$,
where G and H are discrete abelian groups, K a topological abelian group. This isomorphism is obtained by a correspondence $\tau(G, H, K)$ which specifies for each element $\varphi \in \operatorname{Hom}(G, \operatorname{Hom}(H, K))$ a corresponding homomorphism in $H o m(G \circ H, K)$, defined for any generator $g \circ h$ of $G \circ H$ as
$[\tau(G, H, K)](p)(g \circ h)=[\varphi(g)](h)$ in K.

One may show that τ does give an isomorphism, bicontinuous in the appropriate topologies. Both sides of (7) may be treated as the group functions of functors which are obtained by composition from «Hom» and ©D. The corresponding mapping functions, for given homomorphisms

$$
\gamma: G_{1} \rightarrow G_{2}, \quad n: H_{1} \rightarrow H_{2}, \quad x: K_{1} \rightarrow K_{2},
$$

are defined by a parallel composition as

$$
\operatorname{Hom}(\gamma, \operatorname{Hom}(n, x)), \operatorname{Hom}(\gamma \circ n, x) .
$$

Both functors are contravariant in G and H, covariant in K.

The naturality condition for the isomorphism τ reads

$$
\begin{gathered}
\tau\left(G_{1}, H_{1}, K_{2}\right) \operatorname{Hom}(\gamma, \operatorname{Hom}(n, x))= \\
=\operatorname{Hom}(\gamma \circ n, x) \tau\left(G_{2}, H_{2}, K_{1}\right) .
\end{gathered}
$$

Both sides, when applied to an element $\varphi \in \operatorname{Hom}\left(G_{2}, \operatorname{Hom}\left(H_{2}, K_{1}\right)\right.$ yield a homomorphism in $\operatorname{Hom}\left(G_{1} \circ H_{1}, K_{2}\right)$. If each of these homomorphisms is applied to a typical generator $g_{1} \circ h_{1}$ of the tensor product $G_{1} \circ H_{1}$, straightforward application of the relevant
definitions shows that the same element of K_{2} is obtained in both cases; namely, $x\left\{\left[\varphi\left(\gamma\left(g_{1}\right)\right)\right]\left(n\left(h_{1}\right)\right)\right\}$. One may also see directly that this expression represents the only way of constructing an element of K_{2} from the elements g_{1} and h_{1} and the mappings x, φ, γ and n.

The natural isomorphism (7) has some interesting consequences. If K is taken to be the group P of real numbers modulo 1 , $\operatorname{Hom}(H, K)$ becomes the character group $C h(H)$, and the formula may be written as

$$
\operatorname{Hom}(G, C h H) \cong C h(G \circ H) .
$$

Applying the functor Ch to both sides and using the natural equivalence of $C h^{2}$ and I, we obtain the equivalence

$$
G \circ H \cong \operatorname{Ch} \operatorname{Hom}(G, C h H) .
$$

Since this is «naturaln, this could be used as a definition of the tensor product $G \circ H$.
6. Generalisations - With the appropriate definition of a normal subfunctor S of a functor T one can construct a quotient functor T / S, whose group function has as its values quotient groups (i.e., factor groups). With this operation, all the standard constructions on groups may be represented as group functions of suitable functors.

An inspection of the concept of a functor and of a natural equivalence shows that they may be applied not only to groups with their homomorphisms, but also to topological spaces with their continuous mappings, to simplicial complexes with their simplicial transformations, and to Banach spaces with their linear transformations. These and similar applications can all be embodied in a suitable axiomatic theory. The resulting much wider concept of naturality, as an equivalence
between functors, will be studied in a subsequent paper.

NOTA: A Nota que aqui incluimos destina-se a facilitar aos leitores não familiarizados com a noção de grupo dos caracteres de um grapo, a compreensão das ideias expressas pelos autores no § 1. Procuràmos respeitar o espírito do texto.

Seja V um espaço vectorial real e V^{*} o seu dual (i. e. o conjunto das aplicações lineares de V em R munido da estrutura de espaço vectorial real usual). \dot{E} bem sabido que se V tem dimensão finita n, a dimensão de V^{*} é também n e, portanto, V e V^{*} são isomorfos. Mais precisamente, para cada par de bases $\left(e_{i}\right)_{1 \leq i \leq n}$ e $\left(e_{i}^{*}\right)_{1 \leq i \leq n}$ de V e V^{*}, respectivamente, existe um (e um só) isomorfismo $f: V \rightarrow V^{*}$ tal que $f\left(e_{i}\right)=e_{i}^{*}, 1 \leq i \leq n$. Nestas condições, se $n \neq 0$, existe uma infinidade de isomorfismos de V sobre V^{*} nenhum dos quais se pode òbviamente considerar privilegiado em relação aos outros. Todavia, a aplicação $\Psi_{Y}: V \rightarrow V^{* *}$ que associa a cada $x \in V$ a forma linear sobre $V^{*}, \Psi(x)$ tal que $\left(\Psi_{V}(x)\right)(f)=f(x)$ para todo o $f \in V^{*}$, é um isomorfismo de V sobre $V^{* *}$ considerado anatural» por não depender de quaisquer bases prèviamente escolhidaspara V e $V^{* *}$.

Para dar um sentido preciso ao que precede, convém considerar a passagem ao dual como um par de funções : a primeira função associa a cada espaço V
o seu dual V^{*} e a segunda função associa a cada aplicação linear $\gamma: V \rightarrow V^{\prime}$ a transposta $\gamma^{*}: V^{\prime *} \rightarrow V^{*}$ (i. e. a aplicação linear que faz corresponder a cada $f \in V^{\prime *}, \gamma^{*}(f) \in V^{*}$ tal que, para todo o $x \in V$, $\left.\left(\gamma^{*}(f)\right)(x)=f(\gamma(x))\right)$. Este par de funções é um funtor; mais precisamente, um functor contravariante visto que a aplicação correspondente a uma aplicação linear de V em V^{\prime} é uma aplicação linear de $V^{\prime *}$ em V^{*}.

Um isomorfismo ou equivalência natural entre dois fuctores S e T é uma familia de isomorfismos $S(V) \rightarrow T(V)$ tal que, para cada $\gamma: V \rightarrow V^{\prime}$, $S(V) \rightarrow T(V), S\left(V^{\prime}\right) \rightarrow T\left(V^{\prime}\right)$ constituem com $S(\gamma), T(\gamma)$ um diagrama comutativo.

Assim, se S e T são funtores còvariantes, a aplieação composta de $S\left(V^{\prime}\right) \rightarrow T\left(V^{\prime}\right)$ com $S(\gamma)$ é igual à composta de $T(\gamma)$ com $S(V) \rightarrow T(V)$. A situação que consideramos no inicio da Nota ilustra perfeitamente este conceito: se S designa o functor idêntico (que associa a cada espaço vectorial real de dimensão finita V o próprio V e a cada aplicação linear γ a própria aplicação γ) e T designa o funtor que associa a V o seu bidual $V^{* *}$ e a cada aplicação linear $\gamma, \gamma^{* *}$, reconhece-se imediatamente que a familia de isomorfismos Ψ_{y} é uma equivalência natural entre S e T; todavia, os funtores idêntico e «passagem ao dualv não podem ser naturalmente equivalentes em virtude de o primeiro ser còvariante e o segundo contravariante.

A. V. Ferreira

«A matemática foi criada pelos homens para satisfação das suas necessidades, e tem sido para eles, de facto, um precioso instrumerto; o professor de matemática deve permanecer por isso um professor de acção...).
H. Lebesgue
«A produçao industrial pode estar sensivelmente em atraso sobre as descobertas cientificas».....«a aplicação rápida das descobertas cientificas na economia nacional supže resolvidos um certo número de problemas económicos, institucionais, etc.».
M. Layrestiev

PRÉLUDE (${ }^{1}$)

> Au commencement tout était morne et informe. Le Géomètre dit: Que la lumière soit! Et les structures là par espèces percoit, Du chaos émergent attraits, contours et normes.

Dès lors il structure les objets et les flèches, Puis structure les structures, tâche sans fin. L'application, outil premier pour Dedekind, Se mue en" morphisme, d'apparence une fleche.

Catégories en expansion dans l'Univers, Leurs trios s'accordent, les quatuors résonnent, Comme les quintettes, niant deux fois Zénon,

Se composent en long, et en large, un sens clair Aux métamorphoses bien naturelles donnent. Tout cela, dit le Sphinx (*), pour amuser Zsõv.
(*) Goethe, Faust II, Nuit classique de Walpurgis.

[^2]
[^0]: (*) Reprodução das pp. 537-543 do vol. 28 dos Proc. N. A. Sc. USA, amàvelmente autorizada pelo Editor.
 (**) Ver Nota final.

[^1]: ${ }^{(1)}$ Postruagny, L., aUeber den algebraischen Inhalt der topologische Dualitätsätze», Mathematische Ann., 105, 165-205 (1931). Lefschetz, S., aAlgebraic Topologyn, Am. Math. Soc. Colloquium Pub., 27, 55 (1942).
 $\left.{ }^{(}{ }^{2}\right) \mathrm{By}$ a homomorphism we mean a definite pair of groups G_{1} and G_{2} and a (continuous) homomorphic mapping γ_{1} of the first onto a subgroup of the second. The product $\gamma_{2} \gamma_{1}$ is defined for those pairs $\gamma_{1}: G_{1} \rightarrow G_{2}$, $\gamma_{2}: G_{2}^{\prime} \rightarrow G_{3}$ with $G_{2}=G_{2}^{\prime}$.
 (5) By an isomorphism we mean a homomorphism of G_{1} onto G_{2} which is one-one and bicontinuous.

[^2]: ${ }^{(1)}$ Reprodução amàvelmente autorizada pelo Editor, da pág. V da obra «Catégories et Structures» de Ch. Ebresmann ; Dunod, ed. 1965.

