ano xxvi-n. ${ }^{\circ}$ 98-99 GAZETA DE MATEMÁTICA JAN./JUNHO-1965

entron: Gazeta de Matemática, Lda.

admixistradon: A. Sá da Costa

nedactonss: J. Gaspar Teixeira, J. Morgado e J. da Silva Paulo
Composto na Tipografia Maremática, Lda. - Rua Dírio de Notícias, 134 - . $^{\circ}$ - Esq. - Telef. 369449 - LISBOA 2

Geodesic curvature of a curve of a vector field

by R. N. Kaul

1. Introduction.

Let V be a vector field in a surface in a Euclidean space of three dimensions. Pan [3] has studied the normal curvature of the vector field \bar{V} with generalization obtained by the author [2].

The object of the present note is to define the geodesic curvature of the curve of the vector field and obtain some properties. As a special case when the curves of the vector field V form an orthogonal net of co ordinate curves, these geodesic curvatures have the known form.
2. Consider upon a surface S

$$
x^{i}=x^{i}\left(u^{1}, u^{2}\right) \quad(i=1,2,3),
$$

a curve C defined by

$$
u^{\alpha}=u^{\alpha}(s) \quad(\alpha=1,2)
$$

With each point of the surface we associate an arbitrary but fixed vector field V. The components v^{i} and p^{α} of the vector field V in the $x^{\prime} s$ and $u^{\prime} s$ are connected by the relation

$$
v^{i}=x_{{ }_{\alpha}}^{i} p^{\alpha} .
$$

A curve on the surface S along which the vectors of the vector field V are tangent is
called the curve of the vector field. It is defined by [3]

$$
\varepsilon_{\alpha \beta} p^{\alpha} d u \beta=0
$$

The geodesic curvature of the curve C_{V} of the vector field V shall, therefore, be defined by [1]
(2.1) $v^{k} g=-\frac{1}{\sqrt{g}} \frac{\partial}{\partial u \beta}\left(\frac{\sqrt{g} g^{\alpha \beta} e_{\lambda \alpha} p^{\lambda}}{\left(g^{\gamma} \varepsilon_{\alpha \gamma \gamma} \varepsilon_{\mu,} p^{\alpha} p^{\mu}\right)^{1 / 2}}\right)$

Use of formulae

$$
\begin{align*}
& g^{\alpha \beta} \varepsilon_{\alpha \gamma} \varepsilon_{\beta \bar{\partial}}=g_{\gamma \hat{\partial}} \tag{2.2}\\
& \varepsilon_{\lambda^{\alpha}} g^{\beta \alpha}=\varepsilon^{\gamma \beta} g_{\gamma \lambda} \tag{2.3}
\end{align*}
$$

in (2.1) yields the relation

$$
v^{k} g=-\frac{1}{\sqrt{g}} \frac{\partial}{\partial u^{\beta}}\left(\frac{e^{\gamma \beta} g_{\gamma \lambda} p^{\lambda}}{\left(g_{\alpha \mu} \nu^{\alpha} \nu^{\mu}\right)^{1 / 2}}\right) .
$$

In particular when p^{α}, are the components of a unit vector, we have

$$
\begin{equation*}
-v^{k} g=\varepsilon^{\alpha \beta} p_{\alpha ; \beta} \tag{2.4}
\end{equation*}
$$

where semi-colon (;) followed by an index denotes covariant differentiation with respect to u with that index. Since the right hand expression of (2.4) is a scalar called the curl of the vector p_{α} [3], we have
"The geodesic curvature of the curve C_{V} of a unit vector field V is a scalar which numerically equals the curl of the covariant components of the vector field $V^{\prime \prime}$.

Evidently this curl vanishes if p_{α} are the components of the gradient of a scalar ϕ. Therefore
"The necessary and sufficient condition for the vanishing of the geodesic curvature of a curve of a vector field is that the vector be a gradient".

Suppose now that the vectors of the unit vector field V form an orthogonal net of co-ordinate curves, then from (2.4) we obtain for the geodesic curvatures $v^{k} g_{1}$, and $v^{k} g_{2}$ of these curves the following relations

$$
\begin{array}{r}
v^{k} g_{1}=-\frac{1}{\sqrt{g}} \frac{\partial}{\partial u^{2}}\left(g_{11} p^{1}\right) \tag{2.5}\\
v^{k} g_{2}=\frac{1}{\sqrt{g}} \frac{\partial}{\partial u^{1}}\left(g_{22} p^{2}\right)
\end{array}
$$

It is well to recall that

$$
p^{\alpha}=\frac{d u^{\alpha}}{d s} \quad \alpha=1,2
$$

and

$$
\frac{d u^{1}}{d s}=\frac{1}{\sqrt{g_{11}}}, \frac{d u^{2}}{d s}=-\frac{1}{\sqrt{g_{22}}}
$$

to verify that (2.5) and (2.6) are the known results for the geodesic curvature of these curves.

Next we consider the orthogonal trajectory C_{W} of the curve C_{V} of the vector field V. These are defined by

$$
\varepsilon_{\rho \sigma} g^{\rho \mu} \varepsilon_{\mu \alpha} p^{\alpha} d u^{\sigma}=0
$$

which by virtue of (2.2) reduces to

$$
g_{\sigma \alpha} p^{\alpha} d u^{\sigma}=0
$$

If $w^{k} g$ denotes the geodesic curvature of the curve C_{W}, we have

$$
w^{k} g=-\frac{1}{\sqrt{g}} \frac{\partial}{\partial u^{\beta}}\left(\frac{\sqrt{g} g^{\alpha \beta} g_{\lambda \alpha} p^{\alpha}}{\left(g^{\gamma \delta} g_{\alpha \gamma} g_{\mu, \delta} p^{\alpha} p^{\mu}\right)^{1 / 2}}\right)
$$

which yields on simplification
(2.7) $w^{k} g=-\frac{1}{\sqrt{g}} \frac{\partial}{\partial u^{\beta}}\left(\frac{\sqrt{g} p \beta}{\left(g_{\alpha \mu} p^{\alpha} p^{\mu}\right)^{1 / 2}}\right)$

Assuming p^{α} to be a unit vector, we obtain from (2.7)

$$
-w^{k} g=\operatorname{div} p^{\beta}
$$

Thus
"The geodesic curvature of the orthogonal trajectory of the curve C_{V} of a unit vector field V numerically equals the divergence of the vector field".

We can arrive at the above result also by considering a unit vector field $w^{i}\left(=x_{, \alpha}^{i} q^{\alpha}\right)$ orthogonal to the unit vector field $v^{i}\left(=x_{, \alpha}^{i} p^{\alpha}\right)$.

From (2.1), the geodesic curvature of a curve C_{W} of the vector field W is given by

$$
w^{k} g=-\frac{1}{\sqrt{g}} \frac{\partial}{\partial u^{\beta}}\left(e^{\gamma \beta} g_{\gamma \lambda} q^{\lambda}\right)
$$

which on using the relations

$$
\begin{aligned}
& \varepsilon_{\lambda_{\alpha}} p^{\alpha}=q_{\lambda} \\
& \varepsilon^{\gamma \beta} \varepsilon_{\gamma \mu}=\partial_{\mu}^{\beta}
\end{aligned}
$$

yields

$$
w^{k} g=-\operatorname{div} p \beta
$$

Therefore

"The geodesic curvature of a curve of a unit vector field orthogonal to another unit vector field equals numerically the divergence of the latter".

REFERENCES

[1] L. P. Eisenhart, An introduction to differential geometry with use of the tensor calculus, Princeton University Press, 1947.
[2] R. N. Kaul, Generalized normal curvature of a vector field, The Tensor (New Series). 7, N. ${ }^{\circ}$ 3, 1957, pp. 185-189.
[3] T. K. PAN, Normal curvature of a vector field. Amer. Jour. Maths., 75, 1952, pp. 955-966.

