ANO XXV - N.^94-95 GAZETA DE MATEMÁTICA JAN./JUNHO - 1964

edros: Gazeta de Matemática, Lda. admansistador: A. Sá da Costa

redactores: J. Gaspar Teixeira, J. Morgado e J. da Silva Paulo
Composto na Tipografia Matemática, Lda. - Rua Diário de Noticias, 134 - $1 .^{\circ}$ - Esq. - Telef. 369449 - LISBOA 2

On the maximum value of sums of products*

by J. M. S. Simões Pereira

To Mr. Mário Sousa Santos, in appreciation and affection

1. In this paper we consider finite sets $\left(n_{i}\right)$ of equalsigned real numbers denoted by n_{1}, n_{2}, \cdots for which $m \gtrless u$ implies $\left|n_{m}\right| \frac{}{<}\left|n_{u}\right|$.

We shall prove the following
Theorem 1. Of all sums of N products of j factors, formed with the N j elements of a given set $\left(\mathrm{n}_{\mathrm{i}}\right)$ of real positive numbers taken without repetition, the following one, denoted by S_{+}will take a maximum value

$$
S_{+}=\sum_{p=1}^{p=N} n_{p j-j+1} \cdot n_{p j-j+2} \cdots n_{p j} .
$$

In fact, it is always possible to obtain S_{+} starting from an arbitrary sum S_{1} by interchanging successively the positions of the numbers n_{i}, these changes being chosen in such a way that the sums intermediately obtained will take nondecreasing values. The aim of such changes will be to assemble the j lowest elements of (n_{i})-obtainment of

[^0]the product $n_{1} \cdot n_{2} \cdots n_{j}$ as a term of the sum - then to assemble the j lowest remaining elements of (n_{i}) in another term $n_{j+1} \cdot n_{j+2} \cdots n_{2 j}$ - and so on.

Fundamentally, one needs to show that one of the sums obtained from

$$
S_{k}=n_{1} n_{2} \cdots n_{k} n_{u} \cdot A+n_{k+1} \cdot B+R
$$

- where A and B are products of n_{i} and R stands for the sum of the remaining terms - by interchanging either n_{k+1} and n_{u} or $n_{1} \cdots n_{k}$ and k factors of B, will be at least equal to S_{k}.

Suppose then that we interchange the numbers n_{k+1} and n_{u} in S_{k}. We get $S_{k+1}^{\prime}=n_{1} \cdots n_{k} n_{k+1} A+n_{u} \cdot B+R$ and it may be $S_{k+1}^{\prime}<S_{k}$. Our aim is to get a sum $S_{k+1}>S_{k}$, therefore, if $S_{k+1}^{\prime}<S_{k}$ we interchange $n_{1} \cdots n_{k}$ and k factors of B, this way we obtain, as we shall see, a sum $S_{k+1}>S_{k}$.
In fact, being
$S_{k+1}^{\prime}-S_{k}=\left(n_{k+1}-n_{u}\right)\left(n_{1} \cdots n_{k} \cdot A-B\right)<0$,
as $n_{k+1}<n_{u}$, we have $n_{1} \ldots n_{k} \cdot A>B$. Under these conditions and setting $B=N \cdot Q$
with N standing for a product of k factors, we have
$S_{k+1}-S_{k}=\left(n_{1} \cdots n_{k}-N\right)\left(n_{k+1} \cdot Q-n_{u} \cdot A\right)>0$.
This becomes clear if we remark that $n_{1} \cdots n_{k}<N$ and thus, from $n_{1} \cdots n_{k} \cdot A>B=$ $=N \cdot Q$ we get $Q<A$ (positive numbers!); and, on the other hand, multiplying the inequalities $n_{k+1}<n_{u}$ and $Q<A$ we have $n_{k+1} \cdot Q<n_{u} \cdot A$.

Plainly, at most $j-1$ operations of this type will suffice to obtain a sum where the term $n_{1} n_{2} \cdots n_{j}$ already exists; and then the others $N-1$ terms of S_{+}will be successively obtained in a similar way.
S_{+}takes the maximum value for we start from an arbitrary sum S_{1} and, never decreasing, we get S_{+}.

The conclusion of this theorem still holds if n_{1} is the only n_{i} negative; in this case when constructing the product $n_{1} \cdots n_{j}$ we may always obtain $S_{k+1}>S_{k}$ by interchanging n_{k+1} and n_{u} in S_{k}.

As a consequence of theorem 1 we can prove:

Theorem 1 a . If the elements of $\left(\mathrm{n}_{\mathrm{i}}\right)$ are negative (except perhaps n_{1}), the sum denoted by S_{+}in the theorem 1 will take a maximum value if the products have an even number of factors and a minimum value if they have an odd one.

In fact, multiplying all the numbers considered in the Theorem 1 by -1 we get a set (n_{i}) in the present conditions; moreover if the number of factors of the products is even all sums will take the same value, if it is odd all will take a simetric one.

Finally, if we are concerned with products of two factors we can prove Theorem 1 for sets (n_{i}) of unequalsigned real numbers denoted now in such a way that $m \gtrless<u$ implies $n_{m} \frac{\geqq}{<} n_{u}$.

The proof is quite imediate; we have found later a similar theorem in [1] but there, it is the case where two sets $\left(n_{i}\right)$ are given that is dealt with.
2. Suppose now that we take a set $\left(n_{i}\right)$ of positive numbers greater than 1 and consider the sums of products of any number of factors that can be formed with these numbers.

Let two sums where the same number of terms will be products of the same number of factors be called of the same type.

We shall prove the following
Theorem 2. The maximum sum S_{+}of all sums of the same type will be obtained by taking the elements n_{i} in non-decreasing order and forming with them the products in non--decreasing order of the number of factors.

For example, if there are no products with less than k factors but there are m products with k factors, we must take the $m \cdot k$ lowest n_{i} and, in accordance with Theorem 1, we shall construct with them the maximum sum of these m products. Then, we consider those of the remaining terms that will have less factors - say, p products of $j(>k)$ factors. We take from the remaining n_{i} the $p \cdot j$ lowest ones and, still in agreement with Theorem 1 we construct the maximum sum of these p products. And so on.

The proof of this theorem is similar to that of Theorem 1. We shall consider two operations that will permit us to obtain S_{+} starting from an arbitrary sum S_{1} of the same type and we shall show that it is always possible to perform these operations in such a way that the sums intermediately obtained in the process will take nondecreasing values.

Let us investigate these operations.
The aim of one of them is to obtain from a sum
$S=A \cdot n_{\sharp} n_{z+1} \cdots n_{z+k} n_{a}+B \cdot n_{z+k+1}+R$

- where we suppose all n_{i} with $i<z$ already distributed as in S_{+}- another sum $S^{\prime}>S$ where the product $n_{z} n_{z+1} \cdots n_{z+k}$ n_{z+k+1} will appear; this being achieved by permutating in S either $n_{\tilde{\pi}+k+1}$ and n_{a} or $n_{z} \cdots n_{\pi+k}$ and $k+1$ factors of B.

We remark here that with this operation we intend to assemble in the same term, the elements $n_{z}, n_{z+1}, \cdots n_{z+k}, n_{z+k+1}$; so the terms with less thad $k+2$ factors will be already formed like in S_{+}and n_{z+k+1} will not appear in anyone of these terms.

For this reason B will be, in fact, a product of at least $k+1$ factors.

Let us interchange then n_{n+k+1} with n_{a}. We get

$$
S_{1}=A \cdot n_{z} \cdots n_{z+k} n_{z+k+1}+B \cdot n_{a}+R
$$

and
$S_{1}-S=\left(n_{F+k+1}-n_{a}\right)\left(A \cdot n_{z} \cdots n_{z+k}-B\right)$.
As our aim is to obtain a sum $S^{\prime}>S$, if $S_{1}-S<0$ we interchange $n_{z} \cdots n_{z+k}$ with $k+1$ factors of B. In this case we obtain $S_{2}=A \cdot N \cdot n_{a}+B^{\prime} n_{z} \cdots n_{z+k} \cdot n_{z+k+1}+R$ where $B=N \cdot B^{\prime}$ and N is a product of $k+1$ factors, and we can show that $S_{2}-S=\left(n_{z} \cdots n_{z+k}-N\right)\left(B^{\prime} n_{z+k+1}-A n_{a}\right)>0$. In fact we have $n_{z} \cdots n_{z+k}<N$ and on account of the inequality $A n_{\eta} \cdots n_{2+k+1}>B=$
$=N B^{\prime}\left(\right.$ implied by $\left.S_{1}-S<0\right)$, we get $B^{\prime}<A$. Multiplying this one by $n_{n+k+1}<n_{a}$ we obtain $B^{\prime} n_{a+k+1}<A n_{a}$ which proves the assertion.

The other operation is concerned with the fact that each term of j factors (for example $n_{z} n_{z+1} \cdots n_{z+j-1}$) can be constructed within another one which may be a product of more than j factors. As all n_{i} are greater than 1 , if we interchange the product $n_{z} \cdots n_{z+j-1}$ with another product of j factors as well, say $n_{a} n_{b} \cdots n_{h}$, which is already a term of the initial sum, we get a new sum equal or greater than the former.

In symbols, from

$$
S=n_{a} n_{b} \cdots n_{h}+A n_{z} n_{z+1} \cdots n_{z+j-1}+R
$$

where all n_{i} with $i<z$ are already distributed as in S_{+}, we get $S^{\prime}=n_{z} \cdots n_{z+j-1}+$ $+A \cdot n_{a} \cdots n_{h}+R$ and $S^{\prime}-S=\left(n_{z} \cdots n_{z+j-1}-\right.$ $\left.-n_{a} \cdots n_{h}\right)(1-A)>0$ for $n_{z} \cdots n_{z+j-1}<$ $<n_{a} \cdots n_{h}$ and $A>1$.

By means of this two operations we can get the sum S_{+}from an arbitrary one, say S_{1}, through intermediate sums which will take sucessively nondecreasing values and thus Theorem 2 is proved.

REFERENCE

[1] Hardy, Littlewood, Pólya. «Inequalitiesn.

On the slochaslic convergence of random vectors in real Hilbert space

por João Tiago Mexia

1. Introduction

The main objectives of this paper are:
i - to obtain lower bounds of the probability of events that are the intersection of a denumerable or finite family of events, related each one with a random variable.
ii - to study the stochastic convergence of sequences of random vectors as arising from conditions imposed on the sequences of the components with the same index. The case we are mainly interested in is when the vectors have denumerable sets of components although we also consider the case when there is only a finite number of components.

[^0]: - A previous version of this paper has been awarded the aPrémio F. Gomes Teixeira - 1962\%.

