On the reversion of series ${ }^{(0)}$

by E. T. Whiltaker, Sc. D., F. R. S.

University of Edinburgh

One of the most celebrated of Teixeira's discoveries is the extended form of Burmann's theorem which he publisbed (1) in 1900. I propose to show that this theorem may be used to establish a general formula for the reversion of series, or for the calculation of a root of an algebraic equation of any degree.

From the theorem, it is known that if $y(x)$ as a function of x, written in the form

$$
y(x)=(x-\alpha) \psi(x)
$$

then under suitable conditions as regards convergence, we have

$$
x-\alpha=\sum_{r} \frac{\left\{y(x)!^{r}\right.}{r!} \frac{d^{r-1}}{d \alpha^{r-1}}\left[\{\psi(\alpha)\}^{-r}\right]
$$

Suppose that

$$
\begin{align*}
y(x) & =a x+b x^{2}+c x^{3}+d x^{4}+\cdots \tag{1}\\
& =x\left(a+b x+c x^{2}+d x^{3}+\cdots\right)
\end{align*}
$$

so that

$$
\begin{align*}
x & =0 \\
\psi(x) & =a+b x+c x^{2}+d x^{3}+\cdots . \tag{2}
\end{align*}
$$

The theorem becomes

$$
\begin{equation*}
x=\sum_{r=1}^{\infty} \frac{\mid y(x)!^{r}}{r!}\left\{\frac{d^{r-1}}{d x^{r-1}}\left[\{\psi(x)\}^{-r}\right]\right\}_{x=0} \tag{3}
\end{equation*}
$$

Now it was shown by H. W. Segar (${ }^{2}$) that if
$\left(a+b x+c x^{2}+\cdots\right)^{-n}=A_{0}+A_{1} x+A_{2} x^{2}+A_{3} x^{3}+\cdots$.
then the coefficient A_{r} may by written as a deter-

[^0]minant of r rows and columns
\[

A_{r}=\frac{(-1)^{r}}{r!a^{r+n}}\left|$$
\begin{array}{lllll}
n b & a & 0 & 0 & \ldots \tag{4}\\
2 n c & (n+1) b & 2 a & 0 & \ldots \\
3 n d & (2 n+1) c & (n+2) b & 3 a & \ldots \\
4 n e & (3 n+1) d & (2 n+2) c & (n+3) b & \ldots \\
\ldots \ldots
\end{array}
$$\right|
\]

But from Taylor's theorem we have

$$
\begin{equation*}
\{\psi(x)\}^{-n}=\sum_{r} \frac{x^{r}}{r!}\left\{\frac{d^{r}}{d x^{r}}[\psi(x)]^{-n}\right\}_{x=0} \tag{5}
\end{equation*}
$$

Comparing (4) and (5) we have

$$
\left\{\frac{d^{r}}{d x^{r}}[\psi(x)]^{-n}\right\}_{x=0}=\frac{(-1)^{r}}{a^{r+n}}
$$

$$
\left|\begin{array}{lllll}
n b & a & 0 & 0 & \cdots \tag{6}\\
2 n c & (n+1) b & 2 a & 0 & \cdots \\
3 n d & (2 n+1) c & (n+2) b & 3 a & \cdots \\
4 n e & (3 n+1) d & (2 n+2) c & (n+3) b & \cdots \\
\ldots \ldots & \ldots \ldots
\end{array}\right|
$$

Substituting from (6) in (3), we have

This formula (7) is the reversal of the series (1): it gives that root x of the equation (1) which tends to zero when y tends to zero.

$$
\begin{aligned}
& x=\frac{y}{a}-b \frac{y^{2}}{a^{3}}+\frac{y^{3}}{3!a^{5}}\left|\begin{array}{ll}
3 b & a \\
6 c & 4 b
\end{array}\right|- \\
& -\frac{y^{4}}{4!a^{7}}\left|\begin{array}{lll}
4 b & a & 0 \\
8 \mathrm{c} & 5 b & 2 a \\
12 d & 9 c & 6 b
\end{array}\right|+\cdots
\end{aligned}
$$

[^0]: (*) Recoived 1951 February.
 (1) Journal für Math, CXXII (1900), p. 97.
 ${ }^{(3)}$ Mess. of Math. XXI (1892), p. 177.

